
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier xx.xxxx/ACCESS.xxxx.DOI

DFAulted: Analyzing and Exploiting
CPU Software Faults Caused by
FPGA-Driven Undervolting Attacks
Dina G. Mahmoud1(Member, IEEE), David Dervishi1, Samah Hussein1, Vincent
Lenders2(Member, IEEE) and Mirjana Stojilović1(Senior Member, IEEE)
1School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland (e-mail: dina.mahmoud@epfl.ch, david.dervishi@epfl.ch,
samah.husseinyoussef@epfl.ch, mirjana.stojilovic@epfl.ch)
2Cyber-Defence Campus, armasuisse, Thun, Switzerland (e-mail: vincent.lenders@armasuisse.ch)

Corresponding author: Dina G. Mahmoud (e-mail: dina.mahmoud@epfl.ch).

This research is supported by armasuisse Science and Technology.

ABSTRACT
Field-programmable gate arrays (FPGAs) combine hardware reconfigurability with a high degree of
parallelism. Consequently, FPGAs offer performance gains and power savings for many applications. A
recent trend has been to leverage the hardware versatility of FPGAs with the software programmability of
central processing units (CPUs) to improve the performance of processing-intensive workloads. A variety
of heterogeneous FPGA-CPU embedded systems are thus available. However, the security of FPGA-CPU
systems has not yet been thoroughly evaluated. In this work, we demonstrate the first attack on FPGA-CPU
platforms which leverages undervolting caused by the FPGA to inject faults and exploit them against a
software encryption algorithm. The aggressor FPGA affects a CPU sharing the same system-on-chip (SoC).
We show that circuits in the FPGA fabric, controlled by an attacker, can create a significant supply voltage
drop which, in turn, faults the software computation performed by the CPU or even causes a denial-of-
service attack. Our results do not rely on any hardware modifications of the target platform. We present a
characterization of the attack parameters and the effects observed. Then, we leverage the FPGA-induced
undervolting to fault multiplications executing on the CPU. We also highlight how an attacker might benefit
from the injected faults to compromise the system’s security by demonstrating differential fault analysis
(DFA) against an advanced encryption standard (AES) implementation. Our work exposes a new electrical-
level threat in tightly integrated modern FPGA-CPU SoCs, bringing to light a need for more research on
countermeasures.

INDEX TERMS FPGA, heterogeneous computing, differential fault analysis, remote attacks, undervolting

I. INTRODUCTION

For decades, Moore’s law and Dennard’s scaling have been
steadily driving the magnificent computing performance
growth. As Moore had predicted, the number of transistors
on integrated circuits (ICs) was doubling every 18 months.
Higher on-chip speeds were also possible, for the same
power per unit area [1]. However, the power efficiency has
come to an end, limiting the benefit of higher transistor
density. Therefore, Moore’s law is becoming obsolete. To
keep up with the increasing computing performance needs,
the landscape of computing systems is drastically chang-
ing. Heterogeneous systems have enhanced the traditional,

central processing unit (CPU) based platforms. In heteroge-
neous systems, different types of processing units, each well
adapted to a range of user workloads, are combined.

Field-programmable gate arrays (FPGAs), thanks to their
bit-level programmability, can be used to build custom hard-
ware accelerators. FPGAs are well suited for a variety of ap-
plications, e.g., high-performance computing, machine learn-
ing, industrial, automotive, aerospace, and defense. In hetero-
geneous systems, FPGAs can be incorporated as standalone
circuits or as part of a system-on-a-chip (SoC) together with
a general-purpose CPU. Both Xilinx-AMD and Intel [2], [3]
offer FPGA SoCs. FPGAs can also be combined with CPUs

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

even if not on the same chip, which is often the case in
datacenters and the cloud [4]–[6].

With the inclusion of FPGAs in the cloud came the in-
creasing interest in their security. Researchers have discov-
ered that malicious users can build FPGA circuits capable
of various attacks [7]. For instance, logic elements in the
programmable logic (PL) of the FPGA can be programmed
to measure on-chip circuit delays, which are affected by
the power consumption. The measured delays can, in turn,
reveal secret information about the accelerators deployed
on the same chip. Both side-channel and covert-channel
vulnerabilities, which can affect commercial cloud platforms,
have been demonstrated [8]–[10]. FPGAs can host what
are known as power-wasting circuits and draw significant
current. As a consequence, the on-chip voltage is lowered,
affecting the delays of other circuits sharing the same power
supply. Researchers have shown that such voltage variations,
if left unmonitored, can cause denial-of-service (DoS) [11]–
[13]. Finally, with careful control, adversaries can leverage
the voltage fluctuations for more subtle fault-injection ex-
ploits [14]–[16].

CPUs are not immune to the security issues either. While
CPU vulnerabilities can arise from many sources, recent
research has focused on the risks associated with remote
access to the power management interfaces [17]–[22]. It has
been shown that remote monitoring can lead to side-channel
exploits [21]. Furthermore, access to dynamic voltage and
frequency scaling (DVFS) interfaces can be exploited for
fault injection via overclocking [22] or undervolting [17],
[19], [20].

Combining FPGAs and CPUs in the same heterogeneous
system creates the possibility of new, unexplored security
vulnerabilities. Indeed, in our previous work [23], we have
demonstrated that a malicious user, residing on an FPGA, can
create voltage disturbances capable of faulting CPU compu-
tation. In this manuscript, we extend our previous work by
presenting an actual exploit against a CPU encryption code,
which leverages FPGA-generated undervolting not only to
fault the CPU computation, but also to steal cryptographic
secrets. We provide a detailed analysis of the effects of
FPGA-based power wasting on the voltage supplied to the
FPGA SoC, and examine the factors affecting the success of
the attack. Our analysis highlights the various consequences
that such an attack can have, which range from no effect
to a DoS, passing by fault injection. To the best of our
knowledge, we demonstrate the first successful remote dif-
ferential fault analysis (DFA) exploit against the advanced
encryption standard (AES), in which computational faults
are injected into the CPU-based AES code by undervolting
entirely originating from the FPGA.

In summary, this manuscript extends our previous
work [23] as follows:

• We demonstrate an exploit against a realistic CPU vic-
tim code by carrying out DFA against an AES code.

• We enhance the FPGA power-wasting circuits imple-
mentation to modify the attack effects, and introduce

additional attack control parameters. We execute and
present a thorough exploration of the new attack circuit
and its parameters.

• We compare our findings of the FPGA-based attack
against a DVFS-based setup.

• We provide a detailed analysis of the vulnerability of
two victim applications, multiplication and AES, to the
attack parameters under our control.

The remainder of this paper is organized as follows. Back-
ground and related work are given in Section II. The attack
threat model is explained in Section III. System design and
the experimental evaluation are presented in Sections IV
and V, respectively. The results are summarized and dis-
cussed in Section VI. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK
In this section, we discuss how remote exploits based on
electrical-level vulnerabilities are launched on CPUs, FP-
GAs, and heterogeneous systems. In particular, we highlight
attack mechanisms as well as the basics of exploiting injected
faults. We also present an overview of recent works which
have leveraged such attacks.

A. TIMING FAULTS
Electrical-level fault-injection exploits rely on inducing tim-
ing faults in the target victim circuit. Let us look at the dia-
gram in Fig. 1, showing a combinational circuit, whose inputs
are supplied from registers and whose outputs are saved in
registers. If the circuit is operating at a clock period of Tclk,
then the timing faults occur if the following inequality is not
satisfied:

Tclk ≥ Tclk2q + Tsetup + Tcrit − Tskew (1)

Here, Tclk2q is the time between the clock edge and the
corresponding update of a flip-flop’s output, which translates
to the time needed by the input register to supply the new
value to the combinational circuit. Tsetup is the time for
which the value at the input of the output register must remain
stable, before the clock edge arrives. Tcrit is the longest delay
of all paths through the combinational logic (i.e., the critical
path delay) and Tskew is the delay caused by different clock
arrival times to the input and output registers [24].

To violate the circuit’s timing constraints, the adversary
can either manipulate the clock signal (increase its frequency,

D Q
FF

Tcrit
Tclk2q

Tsetup

Tskew

Combinational
logic D Q

FF

CLK

FIGURE 1: Circuit timing parameters, which together form
constraints that must be respected for correct operation.

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

i.e., overclock the design), or manipulate the voltage sup-
ply. Lowering the supply voltage results in increased circuit
delays, potentially making the sum at the right hand of the
inequality higher than the clock period.

B. REMOTE TIMING-FAULT ATTACKS ON CPUS
DVFS is a technique for reducing the circuit’s power con-
sumption by dynamically adjusting the supply voltage or the
operating frequency. The technique exploits the linear and
quadratic relationships between the power and the operating
frequency and voltage, respectively. DVFS is available in
many commodity processors [25]. Moreover, DVFS inter-
faces are software-accessible, though a certain privilege level
is required to access them.

The software accessibility of DVFS interfaces makes mod-
ern CPUs potential victims of remote timing fault-injection
attacks. Tang et al. were the first to exploit the DVFS
interfaces on ARM processors; they overclocked the pro-
cessor well past its operating limits and, consequently, ob-
served faults [22]. Other researchers opted for undervolting
as the fault-injection mechanism [17]–[20]. Successful at-
tacks against Intel and ARM processors, targeting the trusted
execution environments (TEEs) such as ARM TrustZone
and Intel SGX, were demonstrated. The exploits included
breaking the security of encryption algorithms and violating
memory safety [17]–[20].

C. REMOTE TIMING-FAULT ATTACKS ON FPGAS
Heterogeneous FPGA SoCs, similarly to CPUs, may some-
times have DVFS interfaces [27]. So far, research on remote
fault-injection attacks on FPGAs did not make use of DVFS;
rather, it focused on a different form of attacks, in which the
voltage is manipulated indirectly—with the help of the FPGA
logic. As mentioned in Section I, FPGA resources can be
used to build power-wasting circuits, capable of lowering the
voltage of the entire chip. With the lowered voltage, circuit
delays increase and, if the conditions are right, a fault can
be injected or the host platform can be reset. A number of
power-wasting circuits have been explored in the literature.
Designs may use combinational ring oscillators (ROs) (an in-
verter in a closed loop), as shown in Fig. 2a [11]. Alternative
designs introduce a flip-flop or a latch within the feedback
loop of the ROs, as shown in Fig. 2b [26]. Power-wasting
circuits may also employ glitch generators and amplifiers,
similar to the design shown in Fig. 2c. Researchers have
even proposed designs using block random access memories
(BRAMs), and overclocked AES encryption rounds [12],
[26], [28], [29].

Power-wasting FPGA designs typically incorporate an en-
able signal, controlled by the attacker. For a combinational
RO, adding an enable signal typically translates to imple-
menting a NAND functionality in a look-up table (LUT) and
driving one of its inputs by the LUT output, as illustrated
in Fig. 2a. For other power wasters, the control changes,
e.g., one may need to manipulate the signals on the clear or
preset ports of flip-flops, to ensure high-enough switching

frequency and increased power consumption. By carefully
controlling the enable signal of its logic and, consequently,
the obtained voltage waveform, attackers can recover secret
AES keys, activate stealthy hardware Trojans, and bias ran-
dom number generators and neural networks [14]–[16], [30].
Previously demonstrated attacks had one thing in common:
both the attacker and the victim resided on the same FPGA.

D. HETEROGENEOUS SYSTEMS EXPLOITS
While the focus has been mostly on attacking individual
computing units, recent attention has been directed towards
heterogeneous computing systems. For instance, Weissman
et al. induced RowHammer bitflips in the CPU’s main mem-
ory, using an FPGA-based attacker [31]. Many other works
focused on gaining information through side channels or
establishing channels for covert communication. Giechaskiel
et al. demonstrated covert channels between graphics pro-
cessing units (GPUs), CPUs, and FPGAs, sharing the same
power supply unit in a datacenter [9]. They made use of
ROs on the FPGA to act as both transmitters and receivers,
since the RO’s oscillation frequency is affected by the supply
voltage. For the CPU and the GPU, they used computation-
ally heavy codes to transmit messages. Leveraging sensors
on the FPGA, Zhao et al. demonstrated the feasibility of
side-channel attacks against the CPU on the same chip [10].
Finally, Gnad et al. showed that the high power consumption
and the subsequent resetting that occurs due to the ROs
activity not only affects the FPGA fabric, but also affects a
CPU on the same chip [11]. Our work shows the possibility
of FPGA-initiated undervolting affecting a CPU on the same
chip, and injecting faults that can facilitate exploits such as
DFA against AES.

E. DIFFERENTIAL FAULT ANALYSIS AGAINST AES
AES is the algorithm of choice for symmetric encryption
(encryption and decryption performed using the same secret
key). It can be incorporated into modern devices as either
a crypto-accelerator or as a software crypto-library [32].
AES is a block-cipher algorithm operating on 128-bit blocks.
It uses a key whose length can be 128, 192, or 256 bits.
AES consists of applying round transformations to the input
multiple times, where the number of rounds depends on the
size of the key used. For a 128-bit key, AES requires ten
rounds to encrypt the input plaintext. The rounds consist of
the following operations: AddRoundKey, MixColumns (not
performed in the last round), SubBytes, and ShiftRows, as
shown in Fig. 3 [33].

Due to its widespread use, AES is one of the most common
attack targets. Side channels and injected faults can both be
used to recover the AES secret key. For fault injection-based
exploits, DFA is among the techniques commonly used.

In DFA exploits, the attacker relies on being able to send
the same plaintext twice to be encrypted by the victim. One of
those encryptions occurs under normal operating conditions,
and is therefore, correct. The other occurs while the attack is
active. The timing of the fault injection needs to be carefully

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

LUT

OUT

EN

(a) Combinational RO

1
FF

D Q
CLRLUT

EN

(b) D flip-flop RO

FF
D Q

CLK
OUT

(c) Glitch generator

FIGURE 2: Examples of power wasting circuits: (a) combinational RO, (b) a register-based power waster, suitable for exploits
in cloud FPGAs [26], and (c) another variation of power wasters combining registers with glitch generators [12].

SubBytes

ShiftRows

MixColumns

AddRoundKey

R
ou

n
d
 1

SubBytes

ShiftRows

MixColumns

AddRoundKey

R
ou

n
d
 2

SubBytes

ShiftRows

AddRoundKey

R
ou

n
d
 N

K
ey

 E
xp

an
si

on

K1

K2

KN

...

AddRoundKey
K0

Plaintext

Ciphertext

Secret Key

FIGURE 3: Illustration of the AES algorithm.

controlled. A fault injected too early or too late will result
in a faulty ciphertext that is not exploitable for DFA. If
the adversary times the fault injection to occur before the
penultimate round (for a key size of 128 bits, after the eighth
round and before the ninth round), a single injected fault will
result in four faulty bytes in the ciphertext [33]. If a fault is
injected before the eighth round, then all of the ciphertext
bytes will be faulty, which can allow the recovery of the key
using a single fault [32]. Depending of the number of pairs
of ciphertexts collected, the key recovery may or may not
require some brute forcing.

III. THREAT MODEL
Our work focuses on heterogeneous systems combining
CPUs and FPGAs. For voltage variations to propagate across
components of the system, the power delivery network
(PDN) needs to be shared. This sharing may occur at a variety

of levels (e.g., silicon die, board, datacenter rack, etc.). In
our case, we consider a system-on-chip platform, where the
FPGA and the CPU are within the same package [2], [3]
and share the on-chip PDN. Furthermore, the SoC is pow-
ered from the common voltage source, as shown in Fig. 4;
such a setting is common in various commercially available
platforms [34], [35].

We consider a remote exploit scenario; therefore, the ad-
versary is limited to software access to the target platform.
On the CPU side, this means that the attacker can access the
CPU and run some code on one of its cores (attacker core in
Fig. 4). On the FPGA side, the adversary instantiates power-
wasting circuits to lower the voltage of the system. Conse-
quently, the attacker needs to be able to upload the (partial)
bitstream to the FPGA (i.e., have privileges to program the
FPGA for some time). Alternatively, the adversary needs to
be able to communicate with the circuits on the FPGA to
control an already existing power-wasting hardware Trojan.
While the control of the attack can be done from the CPU,
and thus requires communication with the FPGA, this feature
is not necessary and is part of our experimental setup only for
demonstration purposes.

We make no assumptions regarding the availability of
DVFS interfaces on the target platform, as our attack does
not make use of them. In the experimental analysis, we
use the DVFS interfaces to compare the effects of different
frequencies and voltage levels on the CPU operation. How-
ever, the adversary is not assumed to have access to DVFS
interfaces. If DVFS interfaces exist on the target SoC, then
our threat model assumes that the victim is free to use them
for performance or power saving reasons.

The victim runs its application on one of the available
cores of the processing system (PS) (victim core in Fig. 4).
The other cores in the system can be attacker-controlled,
victim-controlled, or neither. They can also be idle or busy.

The attacker can have multiple goals with the undervolting
attack; a DoS exploit is a possibility. An alternative is fault
injection. In particular, the injected faults can lead to DFA
exploits against encryption algorithms, such as AES. For a
successful DFA attack, we make the assumption that it is
possible for the attacker to send some data to the victim
and to observe the corresponding output, sent over a public
channel. This assumption is in line with the classic DFA

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

Processing System

System-on-Chip

Programmable Logic

Power Wasters

Fabric controlled
by the attacker

Attacker
core

Victim
core

Other
cores

Shared PDN

Shared PDN

Voltage
regulator

VIN

External
Voltage
Source

Output 
sent over

a public channel

Visible to
the attacker

FIGURE 4: Threat model, where the attacker-controlled programmable logic induces faults in the victim core, through the
shared power delivery network. The victim can send outputs on a publicly observable channel, which enables DFA exploits
against some encryption algorithms.

threat models [16], [22], [36].
In our threat model, the adversary can only indirectly

attempt to disturb the voltage of the CPU cores, by gener-
ating voltage fluctuations in the part of the chip where the
reconfigurable fabric is.

IV. SYSTEM DESIGN
We test the undervolting-based attack on the Genesys-ZU
board [34]. The board features one Zynq UltraScale+ MPSoC
(XCZU3EG). The MPSoC makes use of a quad-core ARM
Cortex-A53 as an application processing unit (APU) (which
we sometimes refer to as CPU), a dual-core ARM Cortex-
R5F as a real-time processing unit (RPU), and a Mali-400
MP2 GPU, which is not used in our experimental evaluation.
Unlike voltage, the frequency of the APU can be controlled
from software. The PS and the PL share common power
supply voltage regulators.

To be able to compare our results against previous work,
which relied on the availability of DVFS interfaces, we take
one AMD-Xilinx ZCU102 development board; it features the
same MPSoC as the Genesys-ZU (with a larger PL). The
DVFS interfaces of ZCU102 board allow us to control the
voltage and frequency of the APU [27]. In the remainder of
this section, we explain the setup for using the DVFS. We
then present the attacker and the victim designs.

A. DVFS SETUP
We make use of the DVFS setup with the goal of exploring
the voltage and frequency operating limits of the ARM
Cortex-A53 CPU. The ZCU102 development board allows
changing both the voltage and the frequency of the CPU,
thanks to the on-board Maxim InTune digital point-of-load
(POL) controller and the Maxim PowerTool software on the
host PC (i.e., the computer communicating with the board).
The command VOUT_COMMAND allows setting the CPU
operating voltage according to the following formula [37]:

VCPU = V × 2−12, (2)

where VCPU represents the voltage controller output voltage
and V is the value written by the command. Accordingly,

one can sweep the voltage with a granularity of 0.244 mV.
In our experiments, we first send the command to set the
voltage to a low level (i.e., the undervolting command) and
immediately after a command to restore the voltage to its
nominal level. Hence, the resulting voltage impulse lasts for a
short time to emulate the impulse an attacker would generate
from the programmable logic (which has an attack duration
of 2.56 µs). It is worth noting that the level of the timing
control from the host PC is rather limited, resulting in less
accurate attack timing than when launching the attack from
the PL.

The frequency control mechanism is the same for both
Genesys-ZU and ZCU102. From software, we can write
values to the register APLL_CTRL to change the feedback
divider. The clock frequency is calculated as follows [38]:

FCPU =
PS_REF_CLK× FBDIV

DIV + 1
(3)

where FCPU is the output frequency of the APU,
PS_REF_CLK is the default reference clock for the pro-
cessing system (33.33 MHz on the ZCU102 and 30 MHz
on the Genesys-ZU), FBDIV is a 7-bit value controlling the
feedback divider, and DIV is either zero or one, and indicates
whether the division by two is enabled in the PLL or not.
We can control FBDIV and DIV from software to sweep the
frequencies in steps of 15 MHz or 30 MHz for the Genesys-
ZU.

B. PROCESSING SYSTEM
The processing system, in our design and threat model,
is home to both the attacker and the victim. All of our
experiments have no operating system involved, and run
bare-metal. Since the effects induced by the adversary affect
the entire chip, there is a chance that the attacker applica-
tion itself will be affected by the undervolting. Therefore,
we decide to place the attacker on one of the RPU cores,
which run at a lower frequency than the APU cores. The
default frequency for the RPU is 500 MHz and can go as
high as 600 MHz, while the default frequency for the APU
is 1.2 GHz and the maximum recommended frequency is
1.5 GHz [27], [34]. The RPU and the APU clocks are fed

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

Shared PDN

Shared PDN

Processing System Programmable Logic

Attacker
core (RPU)

Victim
core (APU)

Other
cores AXI

GPIOs

Attack
control

Attacker
nodes

Storage control

FIGURE 5: System Design.

1 initialize_variables();
2 expected = calculate_expected_result();
3 wait(); //wait for the attack to start
4 while (count <= attack_duration) {
5 result = victim_function();
6 if (result != expected) {
7 store_fault();
8 }
9 count++;

10 }
11 print(stored_faults);

Listing 1: Code executing on the victim core.

by separate PLLs; hence, the changes to the APU frequency
do not affect the frequency of the RPU. We note here that the
choice to run the attacker on the RPU reduces the likelihood
of the attacker faulting, but is not a requirement of the exploit.
If the target system does not have an RPU, the attacker can
reside on one of the other cores and accept the lower success
rate of the attack caused by errors in the attacker core. In fact,
during some of our experiments, the attacker faults, stopping
the exploit and invalidating the collected data point.

In our test scenario, the processing system has three parts,
as shown in Fig. 5. The first part is the victim core, re-
sponsible for setting the APU frequency. The target code
to attack is also executed here. For testing purposes, the
code begins by initializing the variables and calculating the
expected result. The calculation and storage of the expected
result is done prior to the start of the attack to avoid the
value being affected. Then, the victim function is repeated
within a loop for the duration of the attack. Whenever the
output is not as expected, it is stored to be analyzed after the
attack. We structure this loop to carry out only the victim
function and the error information storage, to aim for the
attack only affecting the victim. Once the exploit is over, the
victim outputs whether a fault has occurred or not. If a fault
has occurred, it also reports the fault so that one can analyze
it. This way, post-processing can help ascertain that reported
faults are indeed faults, and can report the type of fault,
and whether or not it is exploitable. The victim algorithm is
presented in Listing 1. The structure of the code is similar to
the proof-of-concept used in previous research [19].

Then, we have the attacker core, which sets up the com-
munication with the FPGA and controls the attack. The
adversary can configure all of the programmable parameters

of the attacker circuit in the PL. The attacker core is also
the one that controls the start of the exploit. The code starts
by initializing the variables and registers for communication
with the FPGA. Our attacker code repeats the exploit for a
certain number of times, with the attack parameters specified
by the host PC. We control all of the programmable parame-
ters and change them according to the type of the experiment.
While the attack is running, the attacker core waits until the
end to avoid its computation being affected by the exploit.
After the end of all the attack runs, the attacker core outputs
the voltage sensor readings, recorded in the programmable
logic during the experiment. Voltage sensor readings are only
collected to analyze the effects of the undervolting.

Finally, we have the remaining APU cores, which are nei-
ther victim-controlled nor attacker-controlled. These cores
do not influence the attack in any way. In some of our
experiments, we will vary the choice of the APU core for the
victim code for exploration and analysis. Additionally, we
will make the remaining cores either idle (i.e., not running
any code) or busy. The code keeping the cores busy will
typically be similar to the victim code, even though the
adversary will not care for potential faults induced in any but
the victim core.

C. PROGRAMMABLE LOGIC
According to our threat model, the power supply voltage
fluctuations originate from the programmable logic, i.e., from
the FPGA. Hence, in our attack setup, we let the attacker
have unconstrained access to the PL. This is an acceptable
assumption, because the FPGA does not need to be only spa-
tially shared between applications; it can also be temporally
shared (i.e., the adversary could be given full control over the
FPGA for a limited time).

To generate voltage fluctuations within the PL, the ad-
versary deploys power-wasting circuits. A variety of FPGA
power viruses have been proposed in literature and tested on
commercial cloud platforms [26], [28], [29]. While all the
designs can be deployed in one or more commercial cloud
platforms, some cloud service providers run stricter checks
than others and prevent the users from deploying potentially
dangerous circuits (e.g., Amazon AWS prevents designs with
combinational loops, but Alibaba Cloud still allows them).
Given that our experimental setup is not limited by the cloud
service provider policies, we design and implement power-
wasting circuits which are, first, efficient in generating volt-
age fluctuations and, second, allow a high degree of control
over the timing and the effect of the attack.

We implement enhanced ring oscillators (EROs), the
FPGA power wasters previously proposed by La et al. [29].
One instance of an ERO is shown in Fig. 6; it is a collection of
four look-up tables (LUTs) implementing NAND function-
ality. The enable signal of the ERO is driving one input of
each LUT. Two LUT inputs are connected to the output of
the same LUT, forming a combinational loop. The remaining
three inputs are driven by the outputs of the other three LUTs
in the ERO. Compared to the traditional combinational ROs,

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

EN

LUTA

A
B
C
D

LUTB

B
A
C
D

LUTC

C
A
B
D

LUTD

D
A
B
C

FIGURE 6: The schematic of an enhanced ring oscillator
(ERO). Letters A, B, C, and D refer to the outputs of the four
LUTs, which are also driving the inputs of other LUTs.

Block Node

LUTs

ERO

Nblocksx

Nnodes
x

NLUTs / 4x

FIGURE 7: Attacker organization.

LUTs in the ERO drive higher capacitive load, resulting in
increased overall power consumption [29]. In Section V,
we will experimentally compare EROs and ROs (the power-
wasting circuits we used in our previous work [23]).

To allow fine-tuning of the attack, we instantiate EROs
(respectively, ROs) in groups of NLUTs look-up tables in
total, which we term blocks. Knowing that one ERO instance
(respectively, RO) cannot create a significant disturbance on
its own, we treat one entire block of EROs as the smallest
unit of control. We then group Nblocks into nodes, with each
node having its own activation signal, and instantiate Nnodes

nodes in total. This hierarchical structure of clustering the
power wasters is illustrated in Fig. 7.

Besides the flexibility of setting the number of active nodes
and the active blocks per node, we implement a mechanism
for fine-tuning the timing of the attack. In particular, the
following parameters can be set, as shown in Fig. 8:

• the start of the attack, i.e., the moment when the first
attacker node is enabled,

• the period of the enable signal, i.e., the number of clock
cycles between two subsequent activations of the enable
signal,

• the duty cycle of the enable signal, i.e., the number of
clock cycles during which the enable signal remains
high over the period of the enable signal, and

• the duration of the attack.
To maximize the effect of the attack [23], we activate (and
deactivate) the nodes in a staggered manner (i.e., we enable
(disable) one additional node at each subsequent clock cycle).
To control all the parameters, we use advanced extensible
interface (AXI) general-purpose input/outputs (GPIOs), as
shown in Fig. 5.

The last and optional component we implement in the PL
is a voltage sensor. It allows us to observe the effects of the
attack parameters on the resulting voltage disturbance. Once

Period

Duty cycle
Period

Attack duration

FIGURE 8: Enable signals for the first and the last-activated
attacker nodes, illustrating the periodic activation pattern and
the duty cycle of the enable signal.

Initial delay line Observable delay line

Output register

Sensor Reading

CLOCK

Phase-shifted
CLOCK

1 1 0 0 00

Hamming weight

512

... ...

...

9

FIGURE 9: TDC sensor for measuring programmable logic
delay changes caused by the supply voltage fluctuations.

the attack parameters are chosen, the sensor readings can be
ignored. However, the sensor may be helpful for side-channel
analysis, e.g., to decide when to trigger the attack [39]. We
implemented a time-to-digital converter (TDC), as shown in
Fig. 9, similarly to previous research on FPGA-based power
side-channel and fault-injection attacks [8], [14], [30], [39]–
[41]. The TDC sensor consists of carry-chain propagation
elements, forming a delay line. The clock signal enters and
propagates through the delay line. The state of the delay line
is captured in the output register, clocked with the phase-
shifted clock of the same frequency. The phase shift between
the two clocks is set during the calibration, which we per-
formed before running the experiments. The sensor reading
is a numerical value corresponding to the number of carry-
chain elements (the buffers in the observable delay line in
Fig. 9) through which the clock signal has propagated by the
time the observable delay line state is captured in the output
register. In our TDC implementation, the sensor reading is
simply the Hamming weight of the output register. Since the
supply voltage affects the logic propagation delay, the sensor
reading provides information regarding the delay change, and
accordingly the voltage change. The relationship between the
sensor reading and the voltage is approximately linear, as
shown in the comprehensive study by Moini et al. [42].

V. EXPERIMENTAL EVALUATION
In this section, we present the results of the analyses of the
vulnerability of the processor inside an FPGA SoC to the
FPGA-based undervolting attacks. Firstly, we find the CPU
operating limits (the voltage and frequency) in the absence

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

of an attack. Then, we focus on the FPGA-based attacker and
analyze the effects of the attack parameters on the success
of the attack. We proceed with presenting the results of the
fault-injection attacks against two victims: a multiplication
code and an AES code. Finally, we demonstrate a successful
DFA attack against the CPU while it is performing AES
encryption.

A. OPERATING LIMITS
Understanding the operating limits without the attack is
essential for creating realistic attack scenarios. For instance,
it would not make sense to try to attack a victim operating at
a clock frequency that would fault its operation even in the
absence of an attack.

The frequency operating limits are straightforward to test
on both Genesys-ZU and ZCU102 platforms. We sweep the
frequency using the APLL_CTRL register and Equation (3).
For the Genesys-ZU board, we use steps of 15 MHz for
most of the evaluation; we use the step size of 30 MHz (by
changing the DIV parameter to 0) only to validate the CPU
operation at higher frequencies than those achieved with a
DIV parameter of 1 (the maximum programmable frequency
for a DIV parameter of 1 is 1.905 GHz, while it is 3.81 GHz
when DIV is 0).

We collect the operating frequency limits for several soft-
ware applications, to account for the varying signal paths in
the CPU. The investigated victim applications are:

• multiplication (Appendix B),
• TinyAES (Appendix C),
• addition (Appendix D),
• subtraction (Appendix D),
• loads and stores from memory (Appendix E), and
• printing to the standard output (Appendix F).

All applications run within a loop, where we try to catch any
faults that occurred. Moreover, we keep track of the faults
which result in the CPU aborting the operation, and monitor
the communication between the processor and the host CPU.
Finally, we execute the tests once with all the remaining
APU cores busy running the same code as the victim. After
identifying the first APU core which faults in the previous
test (i.e., the busy tests), we let only that core run the victim
code while we keep the remaining APU cores in the idle
state. These experiments allow us to obtain the range of safe
operating frequencies for the victim.

For all the tested configurations, we find that the operating
frequency can be set well past the maximum recommended
frequency of 1.5 GHz, without any problems occurring dur-
ing the code execution. In particular, we find that 1.89 GHz
is the maximum safe operating frequency for all the tested
applications, regardless of the state of other APU cores on the
Genesys-ZU board. The results are summarized in Table 1.
Similarly, for the ZCU102 board, we find that the maximum
safe operating frequency is around 2 GHz, as shown in
Table 2. While the processor is the same on both boards,
there are some differences, including the PDN and the clock

TABLE 1: Maximum safe operating frequency at the nominal
voltage (0.85 V) for the Genesys-ZU, once with other APU
cores idle and once with other APU cores busy.

Application First Core1 Idle (MHz) Busy (MHz)

Multiplication 0 1890 1890
TinyAES 0 1890 1890
Addition 1 1905 1905

Subtraction 2, 3 1920 1905
Load & Store 1 1905 1905

Printing 3 1920 1920

TABLE 2: Maximum safe operating frequency at the nominal
voltage (0.85 V) for the ZCU102, once with other APU cores
idle and once with other APU cores busy.

Application First Core1 Idle (MHz) Busy (MHz)

Multiplication 0, 2 2033 2000
TinyAES 0, 1, 2 2000 2000
Addition 1, 2, 3 2000 2000

Subtraction 2, 3 2016 2000
Load & Store 1, 2, 3 2033 2000

Printing 2 2016 2000

generator, which could account for the maximum frequency
difference. Knowing that the maximum operating frequency
is rather conservative, the victim may choose to overclock
its core (e.g., for improved performance). Hence, in our
attack exploration experiments, we sweep APU operating fre-
quencies both below and above the maximum recommended
frequency.

Thanks to the availability of the DVFS interface on the
ZCU102 platform, it is straightforward to obtain the voltage
operating limits. In the case of the Genesys-ZU, one can read
voltage from the hardened on-chip voltage sensors while the
attack is running and correlate them with the effects observed
in software. However, as the voltage fluctuates during the
attack and the on-chip voltage sensors have a relatively
limited sampling frequency, the results may be inaccurate.
As both experimental platforms use the same FPGA SoC, we
evaluate and report here the voltage operating limits obtained
with ZCU102.

Fig. 10a shows the maximum and minimum voltage at
which we observe faults for the multiplication victim at each
frequency point. The solid lines correspond to the case when
other cores are idle, while the dashed lines correspond to the
case when other cores are busy. For each frequency point, the
maximum faulting voltage is the highest voltage at which we
observe a fault. The minimum voltage is the point immedi-
ately before we start observing the loss of communication
with the core. For the reported faulting voltage range, we
repeated tests several times, with the same and with different
multiplication operands. We show a sample of the operands

1First core refers to the ID of the first APU core that faults when the CPU
operating frequency is further increased.

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

TABLE 3: Locations of multiplication faults (bit flips) for
several operand values.

A B Faults

0xdeadbee 0x445566778 0x0000000000010000

0x445566778 0xdeadbee 0x0000000000c00000

0xff5566778 0xdeadbee 0x0000000000c00000

0xdeadbee 0xff5566778 0x0000000000010000

0xB7A7D0 0x21E4D 0x0000000180000000

0x10 0x32AC87D99 0xff00000000000000

tested and the observed faults in Table 3. The faults are
the result of XORing the expected result with the obtained
result to show the faulty bits. We found that the possibility
of inducing a fault mainly depended on the voltage and
frequency pairs, while the exact fault observed depended on
the operands.

We repeat the same analysis for TinyAES, the AES code
we will analyze in further detail in Section V-E. The results
are shown in Fig. 10b. As expected, we observe a trend
similar to the multiplication case: lower voltage is required to
fault or crash the application at a lower working frequency.
However, the exact values are not the same for TinyAES
and for multiplication. This mismatch is not surprising, as
different pieces of code use different data and control paths
in the CPU. As we will soon see, the observed differences
correspond well to the results of the FPGA-based under-
volting attacks. Finally, in line with previous work [18], the
other cores being busy increases the maximum voltage at
which faults (and crashes) start occurring. However, the trend
remains similar to the idle case.

B. ATTACKER PARAMETERS SWEEP
The adversary’s aim is to induce a controlled voltage drop,
which lasts long enough to propagate to and fault the CPU,
but not long enough to reset the board. CPU-based attacks
have control over the exact voltage values because they
rely on DVFS interfaces [17], [19]. However, they lack the
precise timing enabled by the hardware design deployed on
an FPGA [43]. As a result, they can maintain a specific
voltage value for a significant amount of time, resulting in
a fault, but they are also more likely to inject multiple faults,
because of the reduced control over the attack duration.

Our attack, on the other hand, allows for precise control
over the duration of the attack. We set the duration in
the hardware as a specific number of clock cycles (for a
fixed clock frequency of 100 MHz) for which the attack
will last. We also periodically activate and deactivate the
attacker resulting in the lowest voltage drop lasting for a
few specific clock cycles within the attack duration. How-
ever, because of the use of power-wasting circuits and their
periodic activation, we do not have the same level of control
over the voltage value. This being said, a fixed number of
power-wasting circuits with a specific activation pattern will
produce approximately the same minimum voltage value

TABLE 4: Resource utilization by the RO-based attacker.

Unit
LUTs LUTs FFs FFs
Total in Percentage Total in Percentage

Block 343 0.49% 0 0%
Node 4629 6.56% 44 0.03%
Total 60963 86.4% 660 0.47%

TABLE 5: Resource utilization by the ERO-based attacker.

Unit
LUTs LUTs FFs FFs
Total in Percentage Total in Percentage

ERO 4 <0.01% 0 0%
Block 124 0.18% 0 0%
Node 3932 5.57% 59 0.04%
Total 58981 83.59% 885 0.63%

and undervolting pattern every time. Therefore, our exploit
is also predictable once the mapping between the attacker
parameters and the voltage is known.

In our previous work [23], for the proof-of-concept of the
attack, we used combinational ROs. For a more effective
attack and a wider exploration, we here change the adver-
sary’s circuits to EROs (Section IV-C), and increase the level
of control we have over the attack. We repeat the attack
parameters sweep and explore the additional attack control
parameters with EROs as the power wasters. The resource
usage is reported in Tables 4 and 5.

The aim of our first experiment is to compare the voltage
drops generated using ROs and EROs. It is expected that
due to the extra power consumption in the routing of the
EROs, we will observe a more significant voltage drop. The
results are shown in Fig. 11 for an attack duration of 256
clock cycles (2.56 µs). The baseline corresponds to the sensor
readings recorded in the absence of an attack. Even though
the resource utilization of the EROs is smaller than that of the
ROs, EROs are indeed more effective at creating the voltage
disturbances. We also note here that when the EROs are
deactivated, we observe some overvolting due to the voltage
regulator attempting to quickly recover the nominal voltage.

In Fig. 12, we show the voltage drop in the function of
the number of ERO nodes and blocks per node. We observe
that the attacker configurations with the same total number of
blocks result in a slightly different voltage drop. For example,
10 nodes of 30 blocks each and 15 nodes of 20 blocks each
have the same total number of blocks (300 blocks). However,
the resulting voltage shape varies because the staggered acti-
vation of the nodes takes longer when there are more nodes to
enable. Regarding the lowest value of the observed voltage,
we find that it is mostly affected by the total number of active
blocks; the higher it is, the lower the voltage.

Regarding the period of the enable signal and the duty
cycle, we observe the same effects when using ROs and
EROs, as we show in Fig. 13. Specifically, if we increase
the duty cycle beyond 50%, the board is more likely to

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

(a) Multiplication (b) TinyAES

FIGURE 10: Comparison of the voltage operating limits of APU core 0 (ZCU102) in the function of the CPU frequency, when
other cores are idle (full line) or busy (dashed line), for the multiplication and TinyAES, respectively.

FIGURE 11: Comparison of the voltage drop induced by the
maximum number of EROs and the voltage drop induced
by the maximum number of ROs for the same activation
parameters.

reset; accordingly, we restrict the duty cycle to below 50%.
If the activation period is too short, the voltage drop is not
significant because the power wasters are not enabled for a
sufficiently long time for the voltage to drop. If the activation
period is too long with respect to the attack duration, we
observe one voltage drop pulse during the attack duration.
Furthermore, that voltage drop is not more significant than
those observed with smaller periods. Hence, for a specific
range of activation periods (neither too long nor too short),
we can observe the most effective voltage drop and also
generate more than one disturbance per attack duration.

Next, we show that staggering the activation (and de-
activation) of the nodes is a more effective strategy than
activating them all simultaneously [23]. In Fig. 14, we see
that longer-lasting and thus more effective voltage drop is
indeed obtained; such a voltage shape more closely resem-
bles the voltage an adversary with physical access to the
device or to the DVFS interfaces would be able to obtain.
Furthermore, the staggered (de)activation allows the attacker

FIGURE 12: Effects of the number of active nodes and the
total number of active blocks on the resulting voltage drop.
The higher the total number of blocks, the more the voltage
drops. Due to the staggered activation of the nodes, an attack
with a larger number of nodes takes longer time to drop the
voltage.

to avoid extreme overshoots and undershoots of the voltage,
which are not useful for the exploit because of their short
duration.

Finally, we record the values of the voltage as reported by
the on-chip system monitor, and list a sample of these values
in Table 6. We note here that the analog-to-digital converter
used in the system monitor operates at 0.2 MHz [44], a
lower rate compared to the TDC voltage sensor we employ to
observe the voltage fluctuations (100 MHz). Hence, we take
the readings from the system monitor only as an indication of
the voltage values that occur, rather than the accurate measure
of the minimum voltage. The minimum value may be skipped
due to the reduced sampling speed of the ADC with respect
to the TDC, which we observe in Table 6 as the voltage does
not always decrease when the total number of active blocks
grows. However, using the TDC readings (e.g., in Fig. 12),

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

6

FIGURE 13: Comparison of the voltage drop induced by
different periods (in clock cycles) of the attacker enable
signal for a maximum size of the ERO-based attacker.

FIGURE 14: Voltage drop induced by activating 15 of the
ERO-based attacker nodes simultaneously or in a staggered
fashion for a block size of 20.

TABLE 6: Minimum voltage values reported by the system
monitor for a varying number of active ERO blocks.

Nodes
Blocks Total Voltage Voltage

per Node Blocks in the PS (V) in the PL (V)

9 22 198 0.738 0.712
11 25 275 0.715 0.674
15 25 375 0.688 0.639
15 26 390 0.680 0.636
15 27 405 0.683 0.633
15 29 435 0.688 0.639
15 30 450 0.662 0.627

we see that the minimum voltage value is lower for a bigger
attacker size. From Table 6, we also see that the PL voltage
is always lower than the PS voltage; this is expected because
the PL, being the source of the attack, is also the component
most affected by it.

Table 7 summarizes the range of all the investigated attack
parameters and presents the parameters we have chosen for
the attacks discussed in the following sections.

C. FAULT INJECTION AGAINST MULTIPLICATION
We choose to test our undervolting attack against what we
deem an interesting subset of applications of the ones tested
in Section V-A. We first test our fault injection capabilities
against a proof-of-concept multiplication code (Appendix B)
similar to the one used in Plundervolt [19]. Multiplication
is a widely-used operation in many software algorithms, and
faulting it can allow for exploits, such as violating memory
safety, and redirecting a victim to an attacker-controlled part
of the memory [19]. We enhance the victim code functional-
ity to allow recording multiple faults if they occur, instead of
stopping as soon as a fault has occurred (Listing 1).

Multiplication is implemented as a multiply-add instruc-
tion on the ARM Cortex-A53 on which we run our ex-
periments. We sweep the chosen attack parameters and the
APU frequency for a specific pair of operands to gain an
understanding of when correct operation is expected, when
faults can be injected, and when denial-of-service occurs.
We show the results of this sweep for one pair of operands
(0x445566778 and 0xdeadbee), in Figs. 15 and 16,
for when other cores are idle and busy, respectively. We
note here that the DoS points are due both to the board
resetting and to the loss of communication with the victim
core. A reset requires that we power cycle the device in
order to continue the experiment. On the other hand, loss of
communication is usually recoverable by restarting the code
on the processor from the Xilinx Software Development Kit
(SDK).

We record two types of faults: the faults in the multiplica-
tion result and synchronous aborts. While the default behav-
ior when a synchronous abort occurs is for the code to enter
an infinite loop, we consider it an injected fault instead of a
DoS attack (although an attacker aiming for DoS may make
use of synchronous aborts to achieve that). Synchronous
aborts can occur due to a variety of reasons, but all of them
indicate that a fault has occurred [45]. We interpret this as
fault injection being possible, and observe that changing the
timing of the attack with respect to the victim can result in a
faulty computation instead of a synchronous abort (as it will
be shown in the analysis we do for DFA on AES). Finally, in
Figs. 15 and 16, normal operation refers to cases where the
victim code executes and terminates correctly.

The trends observed in Figs. 15 and 16 are similar between
the two figures and when compared to using DVFS (Fig. 10).
The faults start occurring at a lower frequency for the busy
cores case, again matching the results in Fig. 10. Finally, in
the cores busy case, we observe a more frequent occurrence
of the faults than the DoS, for the same attacker size and
frequency pairs, because the noise introduced by the busy
cores makes the effects of the attack less deterministic.

D. FAULT INJECTION AGAINST TINYAES
An attacker trying to compromise the security of a system
can easily do so by retrieving the encryption key used for
protecting the output of the victim. Therefore, we choose an
encryption algorithm as the victim for the exploit demon-

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

TABLE 7: Targeted attack parameters.

Nnodes Nblocks
Duration Period Duty

Activation
Clock

(clock cycles) (clock cycles) Cycle Frequency

Sweep 0–15 0–31 128–16384 10–2200 10–50% Simultaneous or staggered 100 MHz
Chosen 10–15 25–31 256 80–110 39% Staggered 100 MHz

FIGURE 15: Observed effects for various frequency and
attacker size pairs, when APU core 2 is running the multi-
plication code and the remaining APU cores are idle.

FIGURE 16: Observed effects for various frequency and
attacker size pairs, when APU core 2 is running the multi-
plication code and the remaining APU cores are busy.

stration. We select AES, which is among the widely used
encryption algorithms, with high security. Specifically, we
use the TinyAES implementation2 [46], [47], and structure
the code as shown in Appendix C.

To explore the vulnerability of TinyAES to undervolting-
based fault-injection attacks, we sweep the following param-

2https://github.com/kokke/tiny-AES-c

eters:
• the operating frequency of the APU core on which

TinyAES is running,
• whether the other cores are idle or busy,
• the number of ERO nodes, and
• the number of ERO blocks per node.

For each set of parameters we record whether no fault
happened, a random fault was injected, or a DFA-suitable
fault was detected. We also distinguish between synchronous
aborts and reset. The results are summarized in Figs. 17
and 18, for one specific APU core, when other cores are
idle and busy, respectively. We also show results for higher
frequencies, with smaller attacker sizes, for the case when
other cores are idle in Fig. 19. Similarly to the proof-of-
concept attack on multiplication, we consider a random fault,
a DFA-suitable fault, and a synchronous abort as faults,
because changing the attack timing can lead to the obser-
vation of a different type of fault. We further analyze the
effects of the attack timing on the observed faults in the
following section. Figs. 17, 18, and 19 show similar trends
to those obtained with DVFS (Fig 10b). This similarity is
expected as increasing the attacker size results in a more
pronounced voltage drop. Additionally, with the cores busy,
we see that the faults are more likely, which is consistent with
the previous work’s observation that having other cores busy
reduces the frequency and/or voltage drop for which a fault
may occur [18].

FIGURE 17: Faults observed for various frequency and
attacker-size pairs, when APU core 0 is running TinyAES
and all other cores are idle.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/kokke/tiny-AES-c


Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

FIGURE 18: Faults observed for various frequency and
attacker-size pairs, when APU core 0 is running TinyAES
and all other cores are busy.

FIGURE 19: Faults observed at higher frequencies with
smaller attacker sizes compared to Fig. 17, when APU core
0 is running TinyAES and all other cores are idle. This figure
highlights how changing the attacker size allows for injecting
faults at more extreme frequencies.

9th

Round
10th

Round

FIGURE 20: Fault propagation to the AES output when one
single byte is faulted at the input of the ninth round.

E. DFA AGAINST TINYAES
For the exploit against AES, we aim for a DFA attack
targeting the input to the ninth round. The success of such a
fault injection is relatively simple for the attacker to validate,
as the output will have four faulty bytes, when a single byte
has been faulted, as shown in Fig. 20.

For our attack, we assume that the adversary sends a group
of sixteen plaintexts to be encrypted by the victim AES. First,
the attacker obtains the correct ciphertexts corresponding
to these plaintexts. Then, the attacker requests the encryp-

tion of these plaintexts again, while launching the attack.
The adversary repeats the encryption request until obtaining
enough faults for DFA, and can then retrieve the key. For
fault injection after the eighth round, eight ciphertext pairs
are needed to recover the secret key [48]. If fewer pairs are
collected, recovering the key is still feasible, but will involve
more brute forcing. For example, we manage to recover the
key with only four pairs of correct and faulty ciphertexts, and
one correct plaintext with its corresponding ciphertext3. We
provide the list of plaintexts and ciphertexts used in the attack
in Table 8.

We begin by examining the results of the fault injection.
For any set of attacker parameters which produced a fault,
we know that the resulting undervolting is capable of faulting
the computation. The difference between a successful DFA-
usable fault injection and a random fault injection is mainly
due to the timing of the fault injection attack. In our setup,
the timing of the fault injection with respect to the victim
execution can be controlled by changing the delays in the
attacker code. Particularly, we have delays between each run
with a different period for the enable signal in the chosen
period range (80–110), and between the runs which sweep
the frequency of the enable signal. We refer to these delays
as inter-period and inter-run delays, respectively, and show
their place in the code in Appendix A.

We focus on TinyAES operating at 1.5 GHz, the maximum
recommended frequency of the APU. We find that we are
able to inject faults at 1.5 GHz if we use an attacker of
15 nodes and 30 blocks per node. When using this one set
of parameters and sweeping the delays, we observe various
effects. Figs. 21 and 22 show the results of the delay sweep
for an APU core running at 1.5 GHz, with other cores idle and
busy, respectively. Two datapoints are not available because
the attacker code is faulting, rendering the datapoint invalid.
As shown in Figs. 21 and 22, the effect observed changes
with the delay. It is also worth noting that more ERO blocks
are required for a successful attack at 1.5 GHz than at higher
frequencies; consequently, it is more likely for the attack to
cause reset, resulting in the DoS points in Figs. 21 and 22.
Finally, the state of the other cores affects the success of the
attack. We observe more DFA-usable faults in the busy case
than in the idle case, and at different attacker delays than the
idle case.

Once we find the set of parameters which result in DFA-
usable faults, we repeat the attack with those parameters
multiple times to understand how likely it is for the board to
reset, for no fault to occur, for a random fault to be injected,
and for a DFA-suitable fault to happen. For example, for the
idle case, we choose the following parameters (according to
the results in Fig. 21): 15 nodes, 30 blocks per node, 8,998 µs
inter-period delay, and 40,002 µs inter-run delay, and repeat
the attack 21 times. In these 21 runs, only two data samples
are invalid because of the attacker core faulting. Three times,
no fault happened. Six times, the device reset. Finally, a

3using the DFA code from: https://github.com/arusson/dfa-aes

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/arusson/dfa-aes


Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

TABLE 8: Correct and faulty ciphertexts used in the DFA attack. In red, faulty bytes of the ciphertext. In blue, the corresponding
correct bytes of the ciphertext. The first line shows the correct plaintext and ciphertext (without a corresponding faulty
ciphertext) used when running the DFA code.

Plaintext Correct Ciphertext Faulty Ciphertext

0x103760E68B412BAD179B4FDF45249FF6 0x5DEB028908EE525EAD949A93D4BE6499 N/A
0x103760E67B4122AD179B4FDF45249FF6 0x7495EB59806168ECFDD2702D9009D995 0x7495EBA180612EECFDC2702DAC09D995
0x101160E67B412BAD179B4FDF45249FF6 0x9F62603AB62F265C05CD1797F29C8BC2 0x9F6A603AB72F265C05CD1749F29C9BC2
0x103760FF7B412BAD179B4FDF45249FF6 0x04339C3D81ACB53BF3F8DEE3ADB6D6FD 0xF6339C3D81ACB5F1F3F866E3AD3AD6FD
0x103760E67B412BAD179B4FDD45249FF6 0xD4E0B98A57427333F925DB1013262BF0 0xD4E0998A57AE73334D25DB1013262BDF

Key: 0x3C4FCF098815F7ABA6D2AE2816157E2B

FIGURE 21: Effects observed when changing the inter-
period and inter-run delays in the adversary code, with 15
nodes and 30 blocks per node, targeting core 0 operating at
1500 MHz and running TinyAES encryption.

random fault was injected in seven runs out of the 21. A DFA-
suitable fault was successfully injected three times (in 14%
of the runs). Therefore, we find that good control over the
timing of the attack is important for obtaining the DFA-
suitable faulty ciphertexts and recovering the encryption key.
An example of the collected correct and faulty ciphertext
pairs, and the corresponding key is given in Table 8. We note
here that the plaintexts in Table 8 are similar to one another;
the differences are highlighted in bold.

VI. DISCUSSION

In this work, we have shown how FPGA-based power wasters
can be used to inject faults into the computation of a CPU,
when the FPGA and the CPU are sharing the same power dis-
tribution network. Additionally, we have successfully lever-
aged the faults for a DFA exploit against an AES code. In this
section, we highlight interesting observations derived from
our results, discuss future avenues of research, and comment
on potential countermeasures.

FIGURE 22: Effects observed when changing the inter-
period and inter-run delays in the adversary code, with 15
nodes and 30 blocks per node, targeting core 0 in the busy
cores scenario, where the cores are operating at 1500 MHz
and running TinyAES encryption.

A. VARYING VULNERABILITIES
Our analysis reveals variations in the extent to which soft-
ware routines are susceptible to timing faults injection. Start-
ing with the DVFS analysis, we see that the maximum
operating frequency of different applications slightly varies,
depending on the application itself and on the CPU core
on which it is running. Looking more closely at the mul-
tiplication and TinyAES, we find that they share a very
similar trend of the voltage and the frequency required for
the correct operation and for the fault injection. That said,
TinyAES seems to be more sensitive to undervolting. When
the processor is operating at 1.2 GHz, multiplication faults
when the voltage is below 0.6 V; in comparison, TinyAES
faults for voltage values below 0.611 V. This difference is
not surprising, because every application is a somewhat dif-
ferent sequence of instructions, and instructions may operate
on different values and use different hardware paths in the
processor. These varying degrees of vulnerabilities are the
reason we were able to inject faults into TinyAES at 1.5 GHz,
the frequency which is within the recommended operating
range. For multiplication, however, we observed faults at

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

higher frequencies only.
Some of the data points in Figs. 15, 16, 17, 18, and 19 do

not strictly follow the trends in Fig. 10, because some parts
of the attack execution code other than the victim itself are
failing. For example, issues with the memory access or with
the alignment of the stack pointer and the program counter
can lead to synchronous aborts. We have chosen to report
such issues as faults for two reasons. First, good timing of
the attack is an important factor for the result of the attack
and, second, an adversary who knows the vulnerability trend
of each victim code can adjust the attack parameters so as
to increase the chances of achieving the expected effects (by
steering away from configurations in which faults may be due
to unrelated processor paths failing).

Overall, our analysis reveals that a successful attack de-
pends both on the attack parameters and the knowledge of
the victim code. Since many cryptographic algorithms have
well-known code structures and publicly available libraries,
adversaries have sufficient resources to help them improve
the probability of the attack success.

B. EXTENSION TO OPERATING SYSTEMS
In this work, we considered baremetal code execution. One
of the attractive future steps would be to include an operating
system (e.g., Petalinux) in the analysis. In that case, many
software routines will be executing while the operating sys-
tem is running. Previously, Murdock et al. [49] reported that
kernel panics are one of the recurring effects when lowering
the CPU voltage while an operating system is running. To
achieve exploitable faults in what is likely to become a
much larger attack surface, an FPGA-based attacker may
need to further enhance or even develop entirely new attack
mechanisms and strategies.

C. SOFTWARE COUNTERMEASURES
The attack’s origin in the PL renders some countermeasures,
e.g., preventing access to DVFS interfaces or ensuring the in-
tegrity of the voltage drivers, ineffective [18]. However, there
are other software countermeasures that could protect against
the effects of the attack, by detecting the fault injection and
ensuring that it cannot be leveraged to break the security of
the victim.

Redundancy, for example, is among the common coun-
termeasures against fault injection. Instructions can be ex-
ecuted twice and their results compared, or the code can
be executed on multiple threads and the results compared.
Any discrepancy in the results would indicate that a problem
occurred and, accordingly, that a recovery technique should
be applied [50]. Other countermeasures can work at the
compiler level to harden the applications, such as Minefield,
which places trap instructions that are more likely to fault in
the event of undervolting [43]. While the idea of Minefield
can be applied to other victims not running in Intel SGX, the
presented analysis assumed a DVFS-based attack where the
undervolting typically lasts for more than 200 µs. Our attack
lasts for a considerably shorter time, meaning that more

trap instructions would be required for reliably detecting the
attack.

Even though the software countermeasures are useful for
protecting sensitive applications, they come at the cost of an
increased number of instructions to execute and, accordingly,
increased power consumption and latency. They may render
the exploits more challenging, but they do not eliminate the
root cause of the attack (which, in our case, is the low-
level programmability of the FPGA and the shared power
distribution network).

D. HARDWARE COUNTERMEASURES
Given that the origin of the undervolting is the hardware
of the FPGA, hardware defenses may prove more useful to
protect the platform. While hardware countermeasures may
incur the cost of changing the hardware, the availability of
the PL can be useful for implementing adaptive defenses as
the need arises.

Several countermeasures are proposed against FPGA-
based exploits. For instance, there is a lot of focus on de-
tecting and forbidding attack circuits, in a similar fashion to
Amazon EC2 F1 instances disallowing combinational loops
in designs deployed on their FPGAs [13]. Researchers have
proposed bitstream scanners to detect malicious primitives
in the bitstream and flag them [29], [51]. However, available
bitstream scanners target a limited set of commercial FPGAs,
and they are not used in all toolchains, so to guarantee
protection, the victim would have to incorporate them as a
check before uploading any bitstreams to the device. More-
over, researchers have shown that benign-looking circuits,
uninteresting to bitstream scanners, can also be turned into
effective power wasters [52].

Voltage drop sensors, similar to the one we used, can
act both as a malicious primitive for side-channel attacks,
and as a facilitator of defense mechanisms. Approaches like
those proposed by Provelengios et al. [53] and Mirzargar et
al. [54] can locate the source of the voltage drop. Once the
source is known, a technique like LoopBreaker [55] can be
used to disable the attacker. However, this disabling of the
attacker relies on removing its partial bitstream, which takes
1.5 µs to execute. This means that DoS attacks can probably
be thwarted, but faults may be injected [55]. While many
proposals for countermeasures exist, no single countermea-
sure can fully protect against the kind of attack we present,
and more work is still required to guarantee the security of
FPGA-based heterogeneous systems.

VII. CONCLUSION
FPGAs offer performance gains and power savings for a vari-
ety of modern workloads. As a consequence, many of today’s
computing platforms combine the hardware parallelism of
FPGAs with the speed and programmability of CPUs. De-
spite the popularity of FPGA-CPU heterogeneous systems,
the security vulnerabilities arising from the tight integration
of FPGAs and CPUs remain largely not investigated.

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

In this work, we presented FPGA-to-CPU undervolting-
based exploits. We have shown how, using power-wasting cir-
cuits deployed in the FPGA fabric, an adversary can reduce
the voltage of the entire platform and, hence, inject faults
into the operation of the CPU. We investigated the various
factors affecting the strength of the attack and its success.
We showed that the injected faults can affect different types
of software applications, and can occur within safe operating
limits of the CPU. We demonstrated the use of remote FPGA-
based undervolting to inject faults for differential fault anal-
ysis against AES encryption. Our results present unexplored
fault-injection vulnerabilities affecting many heterogeneous
platforms, and call for research on effective countermea-
sures.

.

APPENDIX A ATTACKER CODE

1 int main()
2 {
3 init_platform(); // initialize platform
4 init(); // initialize all GPIOs to communicate

with the FPGA
5 initialize_variables();
6 calibrate_sensor();
7 empty_attack(); // running an attack without

activating the power-wasters, to record
baseline sensor values

8 wait_for_victim(); // wait for victim code to
start

9 for (int m = 0; m < runs; m++) // loop for
the number of targeted attack runs

10 {
11 period = min_period; //min period for the

toggling frequency that has the highest impact
12 duty_cycle = period*98/256;
13 write_params_to_FPGA();
14 while (period <max_period) // max period for

the toggling frequency that has the highest
impact

15 {
16 write_params_to_FPGA();
17 start_attack();
18 read_data_from_FIFOs();
19 usleep(interperiod);
20 period = period + 2; // period increment
21 duty_cycle = period*98/256;
22 }
23 usleep(interruns);
24 }
25 cleanup_platform();
26 return 0;
27 }

APPENDIX B MULTIPLICATION VICTIM CODE

1 int main()
2 {
3 init_platform();
4 initialize_variables();
5 expected_result=calculate_expected_result();
6 set_apu_frequency();
7 while (count < attack_duration)
8 {
9 var = multiplicand; //initialize var with

multiplicand value
10 var *= multiplier; //multiply var with

multiplier value

11 if (var != expected_result)
12 {
13 record_error();
14 }
15 count++;
16 }
17 print_errors();
18 cleanup_platform();
19 return 0;
20 }

APPENDIX C AES VICTIM CODE

1 int main()
2 {
3 init_platform();
4 initialize_variables();
5 expected_result=calculate_expected_result();
6 set_apu_frequency();
7 while (count < attack_duration)
8 {
9 aes_array = initialize_plaintext_array(); //

aes_array variable provides the plaintext
input to the AES encryption and stores the
ciphertext on returning from the AES function
call

10 AES_encrypt();
11 if (memcmp(aes_array, correct_ct) != 0)
12 {
13 record_error();
14 }
15 count++;
16 }
17 print_errors();
18 cleanup_platform();
19 return 0;
20 }

APPENDIX D ADDITION/SUBTRACTION VICTIM CODE

1 int main()
2 {
3 init_platform();
4 initialize_variables();
5 set_apu_frequency();
6 while (count < attack_duration) //for

subtraction while(count >= 0)
7 {
8 count++; //for subtraction, count--
9 }

10 print_count();
11 cleanup_platform();
12 return 0;
13 }

APPENDIX E LOAD-STORE VICTIM CODE

1 int main()
2 {
3 init_platform();
4 initialize_variables();
5 set_apu_frequency();
6 for (int i = 0 ; i < array_size; i++)
7 {
8 arr1[i] = constant1 - i; //store values in

arr1
9 }

10 for (int j = 0; j< array_size; j++)
11 {
12 arr1[j] = arr1[j] - 2; //load arr1 values

and store new values

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

13 }
14 print_array();
15 cleanup_platform();
16 return 0;
17 }

APPENDIX F PRINTING VICTIM CODE

1 int main()
2 {
3 init_platform();
4 initialize_variables();
5 set_apu_frequency();
6 for (int i = 0; i < 1000; i++)
7 {
8 printf("%d \n", i);
9 }

10 cleanup_platform();
11 return 0;
12 }

REFERENCES
[1] J. M. Shalf and R. Leland, “Computing beyond Moore’s law,” Computer,

vol. 48, no. 12, pp. 14–23, Dec. 2015.
[2] “Zynq UltraScale+ MPSoC,” Xilinx, 2022. [On-

line]. Available: https://www.xilinx.com/products/silicon-devices/soc/
zynq-ultrascale-mpsoc.html

[3] “Cyclone V hard processor system technical reference manual,”
Intel, 2020. [Online]. Available: https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf

[4] “FPGA-based Amazon EC2 F1 computing instances,” Amazon AWS,
2022. [Online]. Available: aws.amazon.com/ec2/instance-types/f1/

[5] Alibaba, “Compute optimized instance families with FPGAs,” Alibaba,
alibabacloud.com/help/doc-detail/108504.htm.

[6] “Machine learning.” [Online]. Available: https://azure.microsoft.com/
en-us/pricing/details/machine-learning/

[7] S. S. Mirzargar and M. Stojilović, “Physical side-channel attacks and
covert communication on FPGAs: A survey,” in 29th International Con-
ference on Field-Programmable Logic and Applications, Barcelona, Spain,
Sep. 2019, pp. 202–10.

[8] O. Glamočanin, L. Coulon, F. Regazzoni, and M. Stojilović, “Are cloud
FPGAs really vulnerable to power analysis attacks?” in DATE, Grenoble,
France, Mar. 2020, pp. 1–4.

[9] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “C3APSULe: Cross-
FPGA covert-channel attacks through power supply unit leakage,” in 41st
Symposium on Security and Privacy (S&P’20), San Francisco, CA, USA,
May 2020, pp. 1728–41.

[10] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel attacks,”
in S&P, San Francisco, CA, USA, May 2018, pp. 229–44.

[11] D. R. E. Gnad, F. Oboril, and M. B. Tahoori, “Voltage drop-based fault
attacks on FPGAs using valid bitstreams,” in 27th International Confer-
ence on Field-Programmable Logic and Applications, Ghent, Belgium,
Sep 2017, pp. 1–7.

[12] K. Matas, T. M. La, K. D. Pham, and D. Koch, “Power-hammering through
glitch amplification – attacks and mitigation,” in 28th IEEE Symposium
on Field-Programmable Custom Computing Machines, Fayetteville, AR,
USA, May 2020, pp. 65–9.

[13] T. La, K. Pham, J. Powell, and D. Koch, “Denial-of-service on FPGA-
based cloud infrastructure - attack and defense,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2021, no. 3, pp.
441–64, Jul. 2021.

[14] D. Mahmoud and M. Stojilović, “Timing violation induced faults in multi-
tenant FPGAs,” in DATE, Florence, Italy, Mar. 2019, pp. 1745–50.

[15] D. G. Mahmoud, W. Hu, and M. Stojilović, “X-attack: Remote activation
of satisfiability don’t-care hardware Trojans on shared FPGAs,” in 30th
International Conference on Field-Programmable Logic and Applications,
2020.

[16] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “FPGAhammer: Remote
voltage fault attacks on shared FPGAs, suitable for DFA on AES,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2018, no. 3, pp. 44–68, Aug. 2018.

[17] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: Breaking SGX
by software-controlled voltage-induced hardware faults,” in AsianHOST,
Xi’an, China, Dec. 2019, pp. 1–6.

[18] ——, “VoltJockey: Breaching TrustZone by software-controlled voltage
manipulation over multi-core frequencies,” in ACM SIGSAC Conference
on Computer and Communications Security. London, UK: ACM, 2019,
pp. 195–209.

[19] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
Intel SGX,” in IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, May 2020, pp. 1466–82.

[20] Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and A.-R. Sadeghi, “V0LTpwn:
Attacking x86 processor integrity from software,” in 29th Usenix Security
Symposium, Virtual, Aug. 2020, pp. 1445–61.

[21] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella, and
D. Gruss, “PLATYPUS: Software-based power side-channel attacks on
x86,” in IEEE Symposium on Security and Privacy (SP), Virtual, May
2021, pp. 355–71.

[22] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the
perils of security-oblivious energy management,” in 26th Usenix Security
Symposium, Vancouver, BC, Aug. 2017, pp. 1057–74.

[23] D. G. Mahmoud, S. Hussein, V. Lenders, and M. Stojilović, “FPGA-to-
CPU undervolting attacks,” in Proceedings of the 2022 Conference &
Exhibition on Design, Automation & Test in Europe, Virtual Event, Mar.
2022, pp. 999–1004.

[24] L. Zussa, J.-M. Dutertre, J. Clédière, B. Robisson, and A. Tria, “Inves-
tigation of timing constraints violation as a fault injection means,” in
27th Conference on Design of Circuits and Integrated Systems (DCIS),
Avignon, France, Nov. 2012, pp. 1–6.

[25] “ARMv8-A power management,” ARM, 2022. [Online]. Available:
https://developer.arm.com/documentation/100960/0100/

[26] G. Provelengios, D. Holcomb, and R. Tessier, “Power wasting circuits
for cloud FPGA attacks,” in 30th International Conference on Field-
Programmable Logic and Applications, 2020.

[27] “ZCU102 evaluation board user guide,” Xilinx, 2019. [Online]. Available:
https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd

[28] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “RAM-Jam:
Remote temperature and voltage fault attack on FPGAs using memory col-
lisions,” in Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), Atlanta, GA, USA, Aug. 2019, pp. 48–55.

[29] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch, “FPGADe-
fender: Malicious self-oscillator scanning for Xilinx UltraScale + FPGAs,”
ACM Transactions on Reconfigurable Technology and Systems, vol. 13,
no. 3, pp. 15:1–15:31, Sep. 2020.

[30] Y. Luo, C. Gongye, Y. Fei, and X. Xu, “DeepStrike: Remotely-guided fault
injection attacks on DNN accelerator in cloud-FPGA,” in 58th ACM/IEEE
Design Automation Conference (DAC). San Francisco, CA, USA: IEEE,
Dec. 2021, pp. 295–300.

[31] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and
B. Sunar, “JackHammer: Efficient rowhammer on heterogeneous FPGA-
CPU platforms,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 169–95, Jun 2020.

[32] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis
of the advanced encryption standard using a single fault,” in Information
Security Theory and Practice. Security and Privacy of Mobile Devices in
Wireless Communication. Heraklion, Greece: Springer, Jun. 2011, pp.
224–33.

[33] P. Dusart, G. Letourneux, and O. Vivolo, “Differential fault analysis on
AES,” in Applied Cryptography and Network Security. Kunming, China:
Springer, Oct. 2003, pp. 293–306.

[34] “Genesys ZU: Zynq UltraScale+ MPSoC development board,”
Digilent, 2022. [Online]. Available: https://digilent.com/reference/
programmable-logic/genesys-zu/reference-manual

[35] “ZCU104 evaluation board user guide (UG1267),” 2018. [Online].
Available: https://docs.xilinx.com/v/u/en-US/ug1267-zcu104-eval-bd

[36] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald, and F. D. Garcia,
“VoltPillager: Hardware-based fault injection attacks against Intel SGX
enclaves using the SVID voltage scaling interface,” in 30th Usenix Security
Symposium, Vancouver, Canada, Aug. 2021, pp. 1–18.

[37] “MAX15303 PMBus command set user’s guide,” Maxim Integrated.
[Online]. Available: https://pdfserv.maximintegrated.com/en/an/UG5816.
pdf

[38] “Zynq UltraScale+ device technical reference manual,” 2020. [Online].
Available: https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
aws.amazon.com/ec2/instance-types/f1/
alibabacloud.com/help/doc-detail/108504.htm
https://azure.microsoft.com/en-us/pricing/details/machine-learning/
https://azure.microsoft.com/en-us/pricing/details/machine-learning/
https://developer.arm.com/documentation/100960/0100/
https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd
https://digilent.com/reference/programmable-logic/genesys-zu/reference-manual
https://digilent.com/reference/programmable-logic/genesys-zu/reference-manual
https://docs.xilinx.com/v/u/en-US/ug1267-zcu104-eval-bd
https://pdfserv.maximintegrated.com/en/an/UG5816.pdf
https://pdfserv.maximintegrated.com/en/an/UG5816.pdf
https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm


Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

[39] J. Gravellier, J.-M. Dutertre, Y. Teglia, P. L. Moundi, and F. Olivier,
“Remote side-channel attacks on heterogeneous SoC,” in Smart Card
Research and Advanced Applications, Prague, Czech Republic, Nov. 2019,
pp. 109–125.

[40] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing
nanosecond-scale voltage attacks and natural transients in FPGAs,” in
21st ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, Monterey, CA, USA, 2013, pp. 101–04.

[41] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Remote power
side-channel attacks on BNN accelerators in FPGAs,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Grenoble,
France, Feb. 2021, pp. 1639–44.

[42] S. Moini, A. Deric, X. Li, G. Provelengios, W. Burleson, R. Tessier, and
D. Holcomb, “Voltage sensor implementations for remote power attacks
on FPGAs,” ACM Trans. Reconfigurable Technol. Syst., aug 2022, just
Accepted. [Online]. Available: https://doi.org/10.1145/3555048

[43] A. Kogler, D. Gruss, and M. Schwarz, “Minefield: A software-only pro-
tection for SGX enclaves against DVFS attacks,” in 31st USENIX Security
Symposium, Boston, MA, Aug. 2022, pp. 4147–64.

[44] “UltraScale architecture system monitor user guide,” Sep. 2021.
[45] “ARM cortex-A series programmer’s guide for ARMv8-A,” Mar. 2015.
[46] J. Gravellier, J.-M. Dutertre, Y. Teglia, and P. L. Moundi, “FaultLine:

Software-based fault injection on memory transfers,” in 2021 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust (HOST),
Tysons Corner, VA, USA, Dec. 2021, pp. 46–55.

[47] B. Selmke, F. Hauschild, and J. Obermaier, “Peak clock: Fault injection
into PLL-based systems via clock manipulation,” in Proceedings of the 3rd
ACM Workshop on Attacks and Solutions in Hardware Security, London,
United Kingdom, Nov. 2019, pp. 85–94.

[48] G. Piret and J.-J. Quisquater, “A differential fault attack technique against
SPN structures, with application to the AES and KHAZAD,” in Cryp-
tographic Hardware and Embedded Systems - CHES 2003, vol. 2779,
Cologne, Germany, Sep. 2003, pp. 77–88.

[49] K. Murdock, D. Oswald, F. D. Garcia, J. V. Bulck, F. Piessens, and
D. Gruss, “Plundervolt: How a little bit of undervolting can create a lot
of trouble,” IEEE Security & Privacy, vol. 18, no. 5, pp. 28–37, Sep. 2020.

[50] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: Theory, practice, and countermeasures,”
Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–76, Nov. 2012.

[51] J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “Mitigating electrical-
level attacks towards secure multi-tenant FPGAs in the cloud,” ACM
Transactions on Reconfigurable Technology and Systems, vol. 12, no. 3,
pp. 1–26, Sep. 2019.

[52] ——, “Remote and stealthy fault attacks on virtualized FPGAs,” in Design,
Automation Test in Europe Conference Exhibition (DATE), Feb. 2021, pp.
1632–7.

[53] G. Provelengios, D. Holcomb, and R. Tessier, “Characterizing power dis-
tribution attacks in multi-user FPGA environments,” in 29th International
Conference on Field-Programmable Logic and Applications, Barcelona,
Spain, Sep. 2019, pp. 194–201.

[54] S. S. Mirzargar, G. Renault, A. Guerrieri, and M. Stojilović, “Nonintru-
sive and adaptive monitoring for locating voltage attacks in virtualized
FPGAs,” in 2020 International Conference on Field-Programmable Tech-
nology (ICFPT), Maui, HI, USA, Dec. 2020, pp. 288–9.

[55] H. Nassar, H. AlZughbi, D. R. E. Gnad, L. Bauer, M. B. Tahoori, and
J. Henkel, “LoopBreaker: Disabling interconnects to mitigate voltage-
based attacks in multi-tenant FPGAs,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), Munich, Germany, Nov.
2021, pp. 1–9.

DINA G. MAHMOUD (Student Member, IEEE)
received the B.Sc. degree in electronics and com-
munications engineering from the American Uni-
versity in Cairo, Egypt in 2019. She is currently
pursuing her Ph.D. in computer and communica-
tion sciences at EPFL, Lausanne, Switzerland. She
is the first recipient of the Cyber-Defence (CYD)
Campus Doctoral Fellowship and the recipient of
the Google Generation Scholarship. Her research
interests include the hardware security of FPGA-

CPU heterogeneous systems.

DAVID DERVISHI received a B.Sc. degree in
computer science from EPFL, Lausanne, Switzer-
land, in 2021. He is currently pursuing a joint
M.Sc. degree in cybersecurity at EPFL and ETH
Zürich.

SAMAH HUSSEIN received her B.Sc. degree in
computer engineering from the American Univer-
sity in Cairo in 2022. She worked as a research
intern at the EPFL School of Computer and Com-
munication Sciences for three months, and she
is currently pursuing her PhD there. Her current
research interests include hardware security and
reconfigurable computing.

VINCENT LENDERS received his M.Sc. and
Ph.D. degrees in electrical engineering and in-
formation technology from ETH Zurich, in 2001
and 2006, respectively. After his Ph.D., he was
postdoctoral researcher at Princeton University.
In 2008, he joined armasuisse where he is cur-
rently the Director of the Cyber-Defence Cam-
pus. His research interests lay at the intersection
between cyber security, data science, networking,
and crowdsourcing. Over the past 15 years, he has

published over 150 scientific publications in these areas and has contributed
to the development of various cyber security and information systems which
have been adopted by the Swiss Federal Department of Defence. He is
also the co-founder and member of the board of the OpenSky Network and
Electrosense Associations.

18 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1145/3555048


Mahmoud et al.: DFAulted: Analyzing and Exploiting CPU Software Faults Caused by FPGA-Driven Undervolting Attacks

MIRJANA STOJILOVIĆ (Senior Member, IEEE)
received the Dipl. Ing. and Ph.D. degrees from
the School of Electrical Engineering, University
of Belgrade, in 2006 and 2013, respectively. She
joined the School of Computer and Communica-
tion Sciences at EPFL in 2016, where she leads
a research group working on electronic design au-
tomation, reconfigurable computing, and hardware
security. She serves on the program committees of
FPGA, FPL, FCCM, and DATE conference. She

is associate editor for IEEE Embedded System Letters and in the process
of joining the editorial board of ACM Transactions on Reconfigurable
Technology and Systems. In 2021, she was on the Best Paper Award (BPA)
committee of the FPGA conference. In 2020, she was nominated for the BPA
at the International Conference on Field-Programmable Technology (FPT).
Additionally, she received the BPA at EMC Europe 2016, Young Scientist
Award at ICLP’16, and the Young Author BPA at TELFOR’12. In 2015, the
EPFL School of Computer and Communication Sciences presented her with
the Teaching Award. Mirjana is principal investigator in the Swiss National
Foundation (SNF) funded project Secure FPGAs in the Cloud.

VOLUME 4, 2016 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3231753

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Background and Related Work
	Timing Faults
	Remote Timing-Fault Attacks on CPUs
	Remote Timing-Fault Attacks on FPGAs
	Heterogeneous Systems Exploits
	Differential Fault Analysis Against AES

	Threat Model
	System Design
	DVFS Setup
	Processing System
	Programmable Logic

	Experimental Evaluation
	Operating Limits
	Attacker Parameters Sweep
	Fault Injection Against Multiplication
	Fault Injection Against TinyAES
	DFA Against TinyAES

	Discussion
	Varying Vulnerabilities
	Extension to Operating Systems
	Software Countermeasures
	Hardware Countermeasures

	Conclusion
	Attacker Code
	Multiplication Victim Code
	AES Victim Code
	Addition/Subtraction Victim Code
	Load-Store Victim Code
	Printing Victim Code
	REFERENCES
	Dina G. Mahmoud
	David Dervishi
	Samah Hussein
	Vincent Lenders
	Mirjana Stojilović


