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ABSTRACT
Pulse-wave DDoS attacks are a new type of volumetric attack

formed by short, high-rate traffic pulses. Such attacks target the

Achilles’ heel of state-of-the-art DDoS defenses: their reaction time.

By continuously adapting their attack vectors, pulse-wave attacks

manage to render existing defenses ineffective.

In this paper, we leverage programmable switches to build an

in-network DDoS defense effective against pulse-wave attacks. To

do so, we revisit Aggregate-based Congestion Control (ACC): a

mechanism proposed two decades ago to manage congestion events

caused by high-bandwidth traffic aggregates. While ACC proved

efficient in inferring and controlling DDoS attacks, it cannot keep

up with the speed requirements of pulse-wave attacks.

We propose ACC-Turbo, a renewed version of ACC that infers

attack patterns by applying online-clustering techniques in the

network and mitigates them by leveraging programmable packet

scheduling. By doing so, ACC-Turbo identifies attacks at line rate

and in real-time, and rate-limits attack traffic on a per-packet basis.

We fully implement ACC-Turbo in P4 and evaluate it on a wide

range of attack scenarios. Our evaluation shows that ACC-Turbo
autonomously identifies DDoS attack vectors in an unsupervised

manner and rapidly mitigates pulse-wave DDoS attacks. We also

show that ACC-Turbo runs on existing hardware (Intel Tofino).
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1 INTRODUCTION
Pulse-wave DDoS attacks have recently managed to take down

critical network infrastructure while causing enormous financial

and reputational damages [2, 4, 49, 57]. In contrast to conventional

DDoS attacks, which grow steadily and persist longer in time, pulse-

wave DDoS attacks consist of high-rate short-lived bursts. Each

burst typically leverages a different attack vector (e.g., NTP, DNS,

Memcached) and can reach hundreds of Gbps [38, 50, 52].

The threat in pulse-wave attacks resides in that they target the

Achilles’ heel of existing DDoS mitigation systems: their reaction

time. Most in-network DDoS defenses today (both in research and

production) rely on some sort of offline facility that can either di-

rectly scrub traffic [7, 19, 23, 34, 42, 58], orchestrate a routing-based

defense [46, 51], or deploy an in-network pre-configured mitiga-

tion [35, 54]. The time required for an in-network defense to reach

this external facility and deploy the corresponding defense can be in

the order of seconds to minutes [52]. Pulse-wave attacks exploit this

vulnerability by sending traffic pulses that force the DDoS defense

to repeat this control loop over and over. By keeping the defenses in

a constant transient state, pulse-wave attacks manage to make them

ineffective. If the defenses rely on traffic redirection, pulse-wave

attacks may even produce route flapping in the network [26].

Designing a pulse-wave defense is intricate. Like conventional-

DDoS defenses, an ideal pulse-wave defense needs to be, first,

generic, to identify a wide variety of attack vectors at different gran-
ularity [5, 17]. Generic techniques usually require unsupervision

and incur the risk of misclassifying traffic. Thus, an ideal defense

also needs to bemeasured in responding to attacks [47]. Most DDoS

defenses fail at the first condition. For example, signature-based

defenses [35, 54, 58] are not generic. They only cover a small set of

attack vectors, and can not keep up with the constantly-growing

list of new attacks [5, 17]. Similarly, most congestion-management

tools (e.g., heavy-hitter detectors or active queue management)

lack granularity: they only work at, e.g., the per-flow level or the

whole-traffic level. Other DDoS defenses fail at satisfying the second

condition. For example, drop- or routing-based defenses [20, 39]

strongly degrade performance in case of misclassification.

Aggregate-Based Congestion Control (ACC) was proposed two

decades ago, satisfying the two design conditions [36]. ACC is a

canonical mechanism to reduce the impact of congestion caused

by generic traffic aggregates, with a measured bandwidth control.

At a high level, ACC is a feedback loop that iteratively: (i) infers
the aggregates causing the congestion; before (ii) reducing their

throughput to a reasonable level. To infer the aggregates, ACC clus-

ters the headers of packets dropped by a Random Early Detection

(RED) queuing discipline. ACC then rate-limits the inferred aggre-

gates to keep the total traffic throughput below the link capacity.

https://doi.org/10.1145/3544216.3544263
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While ACC is effective at inferring and controlling conventional

DDoS attacks, it fails at mitigating pulse-wave attacks, as it cannot

keep upwith the required fast reaction times. The reason is two-fold:

(i) ACC relies on offline inference and control mechanisms, which

run on either a separate server or a control plane, and (ii) ACC

leverages a threshold-based defense activation. By running offline,
ACC suffers from slow reaction time, which opens the door to pulse-

wave DDoS attacks. By relying on threshold-based activation, ACC

either further slows down reaction time or increases the probability

of false positives, which negatively impacts its performance. In our

experiments, even with the best configuration, ACC drops ≈ 20%

of benign traffic in the event of a pulse-wave attack (§2.2).

Our work. In this paper, we redesign ACC for pulse-wave DDoS

defense. We propose ACC-Turbo: the first sub-second-reaction-
time aggregate-based congestion control mechanism that mitigates

pulse-wave DDoS attacks by running at line-rate on commodity

hardware. ACC-Turbo strategically combines two key techniques:

online clustering directly in the data plane to infer attacks, and

programmable scheduling to mitigate them (cf. Table 1).

First, ACC-Turbo offloads the clustering process to the data plane

and analyzes all the traffic at line rate (instead of just a sample). This

allows ACC-Turbo to speed up reaction time substantially. Further,

since data-plane processing does not impact traffic latency, ACC-
Turbo runs the clustering algorithm continuously. This eliminates

the need for a threshold-based activation, which can be vulnerable

to pulse-wave attacks and opens the door to potential false posi-

tives. The always-on design enables ACC-Turbo to anticipate the

congestion events, achieving yet-faster reaction time.

Second, ACC-Turbo uses programmable scheduling to depriori-

tize malicious traffic instead of dropping or rate-limiting it. Doing so

has three advantages: (i) it accommodates fine-grained assessments

which can adjust to the requirements of individual aggregates, in-

creasing fairness; (ii) it adapts at the per-packet level, being able

to react to traffic variations rapidly, achieving faster and more-

accurate bandwidth allocations; and (iii) it only leads to hard drops

under congestion, being transparent (and therefore safe) otherwise.

Evaluation. We implement ACC-Turbo in P4 [11] and run it on

programmable switches (Intel Tofino). We show that ACC-Turbo
effectively mitigates pulse-wave DDoS attacks in real-time (i.e., less

than 1s reaction time), rapidly adapting to attack variations. We

also compare ACC-Turbo with Jaqen [35], a state-of-the-art DDoS

defense. We show that ACC-Turbo is at least 10× faster than Jaqen

in mitigating a broader range of attacks while also being safer.

Contributions. We make the following contributions:

• An online-clustering approach to infer pulse-wave DDoS

attacks at scale directly from the network (§4).

• A scheduling algorithm to mitigate pulse-wave attacks and

minimize their impact on background traffic (§5).

• An implementation
1
of ACC-Turbo in Python/P4 (§6).

• A comprehensive evaluation showing ACC-Turbo’s practi-
cality and its ability to run on hardware (§7, §8).

1
Available at https://github.com/nsg-ethz/ACC-Turbo
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Figure 1: ACC architecture [36].

2 BACKGROUND
In this section, we review the design of ACC (§2.1), as well as its

limitations in mitigating pulse-wave DDoS attacks (§2.2).

2.1 Aggregate-based Congestion Control
Aggregate-based Congestion Control is a mechanism for inferring

and controlling high-bandwidth aggregates that persistently over-

load a link in the network. In this paper, we focus on its local version,

which runs on the switch that gives access to the congested link.
2

Fig. 1 shows the architecture of an ACC-enabled switch. The core

of ACC is composed of a REDmodule, implemented on top of a First-

In First-Out (FIFO) queue. This module monitors the average queue

size of the FIFO queue and drops packets probabilistically depending

on its size. If the FIFO queue is almost empty, all incoming packets

are accepted. As the queue grows, the probability of dropping an

incoming packet increases. When the queue is full, the probability

is at its maximum, and all incoming packets are dropped.

Whenever the RED module decides to drop a packet, it reports

the header of the dropped packet to an ACC Agent. The ACC Agent

periodically analyzes the packet headers of all dropped packets and

tries to infer the traffic aggregates responsible for the congestion.

When the ACC Agent identifies an aggregate, it creates a rate-

limiting session to police the throughput of the aggregate. From that

point onwards, all upcoming packets belonging to the aggregate

will be rate-limited before being processed by the RED module.

Identifying congestion. The ACC Agent is activated when the

output queue experiences sustained high congestion. This occurs

when the drop rate in the output queue exceeds a pre-defined value,

phiдh , during a certain time period, K , which is also pre-defined.

Inferring aggregates. The ACC Agent infers traffic aggregates

based solely on IP prefixes. At the high level, it extracts a list of

either source or destination IP addresses that account for more than

twice the mean number of packet drops and clusters them into

24-bit prefixes. To minimize collateral damage, ACC then walks

down the prefix subtree for each of the aggregates, trying to obtain

longer prefixes that still contain most of the packet drops.

2
The original work also includes a “pushback” mechanism to extend the rate-limiting

policies to upstream switches. This part is out of our scope.

https://github.com/nsg-ethz/ACC-Turbo
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Activation Inference Control

ACC [36] Threshold-based Offline clustering on RED drops Uniform rate limiting using estimated rates

ACC-Turbo Always-on Online clustering on all traffic Programmable scheduling using exact rates

Table 1: ACC-Turbo techniques vs. ACC.
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Figure 2: Comparison between ACC and ACC-Turbo with the original papers’ experiment [36].

Rate-limiting aggregates. For each aggregate inferred, the ACC

Agent then computes the bandwidth to which it should be rate-

limited. This limit is computed such that the drop rate at the output

queue, gets below a pre-defined value,ptarдet . To that end, the ACC
Agent, first, sorts the list of inferred aggregates by their number of

drops (highest, first). Then, it computes the excess arrival rate at the

output queue, Rexcess , defined as the amount of traffic that should

be dropped in order for the drop rate to get below ptarдet . Finally,
the ACC Agent determines the minimum number of aggregates

that should be rate-limited, |A|, and the rate to which they should

be limited, L, such that the total rate is reduced by Rexcess :

|A |∑
i=1
(Aддreдate[i].rate − L) = Rexcess

With this design, ACC manages to be generic (inferring attacks

agnostically to their characteristics) and measured (rate-limiting

inferred attacks instead of just dropping them).

Experiment. We illustrate ACC’s performance by using packet-

level simulations (cf., §8 for more details about the setup). We

reproduce ACC’s original experiment [36]. It consists in scheduling

five aggregates (1-5) over a bottleneck link using FIFO, and ACC,

respectively. Aggregates 1-4 are constant-bit-rate flows. Aggregate

5 is a variable-rate flow which represents an attack, and starts

increasing (resp. decreasing) its rate at t = 13s (resp. t = 25s).
Fig. 2a and Fig. 2b show the bandwidth share across the five

aggregates (top) and the drop rate at the output queue (bottom)

when no protection (i.e., FIFO) and ACC are used, respectively. ACC

is configured with phiдh = 0.1, K = 2s , and ptarдet = 0.05. Appen-

dix A details the rest of parameters. Without ACC, we see how the

attack traffic captures most of the link bandwidth, degrading the

performance of the other aggregates. With ACC, the attack is effi-

ciently mitigated. Indeed, when the drop rate at the output queue

exceeds phiдh , the ACC Agent infers the attack and rate-limits it

sufficiently to reduce its impact on background traffic.

Finally, we also see how the reaction time of ACC is ≈ 4s . This
is the time since the first attack packets arrive (at t = 13s), until
the defense is deployed (at t = 17s). This time is mostly driven

by the monitoring-window size, K . Indeed, for smaller K values,

ACC checks more often whether phiдh is exceeded, being able to

identify faster whenever that occurs. A lower K , however, does
not always imply a faster reaction time (cf. Fig. 2c). For example,

K = 10s achieves a slower reaction time than K = 15s . The reason
is that when K = 10s , even though the threshold is checked first at

t = 10s , it is not triggered until t = 20s , when phiдh is reached.

2.2 Limitations of ACC
While ACC manages to defend against conventional DDoS attacks

successfully, it is vulnerable to pulse-wave DDoS attacks. The rea-

son is two-fold. First, ACC uses offline inference and control mecha-

nisms, which run on either a separate server or a control plane [36].

Pulse-wave DDoS attacks are specially crafted to target the time

required by such control planes to compute and deploy the right

DDoS defense. They do so by sending short high-rate traffic pulses

which morph over time. These pulses congest the link resources

while the inference and control processes are running. By the time

the inference and control processes manage to converge and ACC

mitigates the attack, another pulse comes in, forcing the control

loop to start the mitigation process all over again.

The second reason is that ACC relies on a threshold-based de-

fense activation, which introduces a second vulnerability to pulse-

wave attacks: If we configure a too small threshold (to speed up

reaction time), the probability of false positives (i.e., benign traffic

bursts identified as attacks) increases, as we prove in §8. In contrast,

if we configure a too large threshold (to maximize accuracy), reac-

tion time gets slower, opening the door to pulse-wave attacks. In

ACC, false positives are especially concerning under attack, given

that (i) ACC rate-limits all aggregates to the same amount, and (ii)

its rate-limiting policies have long-lasting effects (cf. §2.1).
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Figure 3: Performance under morphing attack.

Example. In the following, we evaluate ACC’s mitigation effi-

ciency in the case of a pulse-wave attack composed of four vectors

(starting at 5s , 15s , 25s , and 35s). For simplicity, we represent the

four pulses as a single “attack” aggregate (i.e., aggregate 5). We

leverage four constant-bit-rate flows as background traffic (i.e.,

aggregates 1-4), which transmit at ≈ the link capacity.

Fig. 3a and Fig. 3c illustrate the bandwidth share at the output

link when FIFO and ACC (configured as in §2.1) are used. We see

howACC fails at mitigating the attack, only managing to defend the

second half of attack pulses. By the time the monitoring window K
is triggered, and phiдh is reached, the pulse-wave attack has already

managed to throttle benign traffic. Fig. 3b shows how reducing the

size of the monitoring window, K , does not help. In fact, due to

false positives, the performance also gets bounded for the smallest

K values, with ≈ 20% of benign traffic being dropped.

Given the incapacity of ACC to mitigate pulse-wave DDoS at-

tacks, we propose ACC-Turbo. With an under-second reaction time,

and disposing of the threshold-based activation, ACC-Turbo man-

ages to successfully mitigate both conventional and pulse-wave

DDoS attacks (cf., Fig. 2d and Fig. 3d, respectively).

3 OVERVIEW
In this section, we present the threat model (§3.1), and introduce

an overview of ACC-Turbo’s design (§3.2).

3.1 Threat model
Attacker. The attacker’s objective is to generate a pulse-wave

DDoS attack (i.e., a series of short-duration high-rate traffic pulses)

towards a critical link of the network in order to exhaust its ca-

pacity and prevent legitimate flows from using it. To that end, the

attacker is free to generate any kind of attack traffic. For instance,

the attacker can rely on: (i) a botnet of infected devices which di-

rectly floods traffic towards the link; (ii) reflection and amplification

techniques, which send spoofed requests to open servers such that

their responses cross the link; or even (iii) complex link-flooding

attacks which exchange low-rate flows from numerous sources to

numerous destinations such that they also cross the link [29].

In Out
Online

Clustering
(§ 4)

ACC-Turbo Agent
Cluster
Statistics

Programmable Scheduling (§ 5)

Scheduling Policy
Data Plane

Control Plane

Figure 4: ACC-Turbo architecture.

System model. Same as ACC, ACC-Turbo runs on the switch that

gives access to the critical link. This switch can be, e.g., an edge-

router at an ISP or IXP, with a bigger input capacity than the output

link’s bandwidth. ACC-Turbo analyzes all traffic entering the switch

(including attack traffic) and processes each packet individually. We

consider that ACC-Turbo only looks at the packet headers, and it

performs limited computations. (This is imposed by the fact that we

want ACC-Turbo to run at line rate on programmable switches [11]).

3.2 ACC-Turbo design
ACC-Turbo is a switch-native aggregate-based congestion control

mechanism that leverages programmable switches tomitigate pulse-

wave DDoS attacks. It consists of an online-clustering module that

runs entirely in the data plane and a programmable-scheduling
module that runs in both the control plane and the data plane (see

Fig. 4). With this hybrid design, ACC-Turbo balances the need for

fast reaction (by running the inference process in the data plane)

and accuracy (by dedicating most data-plane resources to inference

while offloading the least time-sensitive parts to the control plane).

The online-clustering module extracts a set of features from the

headers of arriving packets and uses them to cluster similar packets

together. It runs in the data plane, processing all packets at line rate.
It also runs continuously, regardless of whether there is congestion,
eliminating the need for a threshold-based activation. Running

continuously also allows ACC-Turbo to anticipate its inference

decisions to the actual attack, speeding up reaction time.

The programmable-scheduling module involves both the control

and the data plane. The control plane periodically polls information

about the extracted clusters, including statistics about the clusters

and their exact arrival rates. Then, it uses this information to assess

the probability that each cluster contains attack traffic, and derives

a scheduling policy for each cluster. The scheduling policies aim at

deprioritizing clusters with a higher probability of being part of an

attack. ACC-Turbo finally deploys these policies to the data plane

and applies them to incoming packets mapped to each cluster.

By using programmable scheduling, ACC-Turbo adapts to traffic

variations at a per-packet granularity and rapidly reacts to attack

changes. Further, programmable scheduling enables ACC-Turbo to

run continuously, even in the case of no attack. This is because

programmable scheduling does not hurt traffic: it only drops packets

in case of severe congestion (being transparent otherwise) and starts

by those with higher chances of being part of an attack.
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4 TRAFFIC-AGGREGATE INFERENCE
Wenow describe the theoretical basis behindACC-Turbo’s inference
component. First, we phrase the problem formally and propose

a practical solution based on online clustering (§4.1). Second, we

introduce the design decisions that makeACC-Turbo implementable

in existing programmable switches (§4.2). The resulting clustering

algorithm can be found in Appendix B.

4.1 Problem definition
Let us define a packet p as a set of features F , where each feature

corresponds to a field from the packet header (e.g., sport, dport,
ip.ttl, ip.proto). For each feature f ∈ F , packet p has a specific

value associated: pf . We distinguish two types of features: ordinal
features, for which closer proximity between their values implies

stronger similarity (e.g., ip.src, ip.dst, ip.len, ip.ttl), and nominal
features, for which closer values do not necessarily imply similarity

(e.g., sport, dport, ip.proto).
Let us define an aggregate a as the same set of features F .

For each ordinal feature f , the aggregate a has a range of val-

ues associated: f (a) = [minf (a),maxf (a)]. For each nominal fea-
ture f , aggregate a has a set of discrete values associated f (a) =
{minf (a), ...,maxf (a)}. With this definition, aggregate a represents
all the packets with feature values included in its ranges and sets.

Objective. At the high-level, given a set of incoming packets, our

goal is to infer a set of aggregates that represent all the observed
packets as precisely as possible. We need to limit the number of

aggregates to infer by a parameter, |A|. Otherwise, one could list

each packet as a separate aggregate and obtain perfect precision.

Definition 4.1 (Aggregate-inference problem). Let δf (a) be the

cost of an aggregate a, for feature f , which measures the number

of values that it represents. For ordinal features, δf (a) =maxf (a) −
minf (a). For nominal features, δf (a) = | f (a)| (i.e., the number of

values in the set). Let δ (a) =
∏

f ∈F δf (a) be the cost of the entire
aggregate, as the product of each individual feature cost. For a given

feature f , a set of packets P, and a limit on the number of inferred

aggregates (|A|), find the set of aggregates A∗ = a1, ...ak ′(k
′ ≤

|A|) that represent P and minimize δf (A
∗) =

∑
a∈A∗ δf (a).

The presented problem is equivalent to the intent-inference prob-

lem in [31], which is NP-hard. As such, we propose a heuristic solu-

tion based on online clustering. Our solution aims at approximating

the optimal result while enabling per-packet processing. The cost

function in Def. 4.1 estimates the number of different packets that a
represents, but it is also a measure of similarity of the packets in a.
Indeed, packets that can be represented in a narrow aggregate have

higher similarity than those which require a broader aggregate.

With this intuition, we build an online-clustering algorithm that

groups similar packets by minimizing the cost in Def. 4.1.

Definition 4.2 (Online-clustering framework [13]). For a sequence
of points p in P, maintain a collection of |C| clusters such that,

when each input point p is presented, either it is assigned to one of

the current clusters or it starts off a new cluster while two existing

clusters are merged into one.

The online-clustering framework is characterized by an endless

stream of data, where each data point (i.e., packet) is seen only once:

IP src

IP dst

Range-based

Center-basedx

IP src

IP dst

Euclidean

Manhattan

Anime
x

x

x

x

Figure 5: Cluster representations and distances.

it comes in, is processed, and then it goes away, never to return. As

such, the algorithm is required to take an irrevocable action after

the arrival of each point [25]. Note the difference to the streaming
case, where the job is finite, and the algorithm can do a second pass

through the data to fine-tune the clustering result [9, 21].

4.2 Design decisions
The proposed framework allows three design decisions: (i) the

number of clustering possibilities that should be evaluated at each

iteration, (ii) the type of information that should be stored about

each cluster, and (iii) the distance that should be used to assess the

clustering decisions. We make these decisions with the goal of max-

imizing performance while staying within the resource constraints

of existing data planes (to achieve an in-network design).

4.2.1 Clustering search (fast vs. exhaustive). When a new

packet arrives, the online-clustering algorithm can either: (i) merge

the new packet to its closest cluster or (ii) merge two existing

clusters and create a new cluster for the new packet.

[✓] Fast search. If the clustering algorithm only supports step (i),

we call it fast. This approach follows a linear search and requires

only |C| distance computations: one for each existing cluster. ACC-
Turbo relies on this type of search because it can be implemented

on programmable data planes.

[X ] Exhaustive search. If the clustering algorithm supports steps

(i) and (ii), we call it exhaustive. This approach follows a quadratic

search and requires

( |C |
2

)
additional distance computations. For a

given clustering decision, the exhaustive approach outperforms

since its search space includes (but is not limited to) the search

space of the fast approach. However, the exhaustive approach is not

implementable at line-rate in existing programmable data planes: it

requires accessing multiple times each cluster’s information, while

registers in today’s pipelines can only be accessed once per packet.

4.2.2 Cluster representation (ranges vs. center). A naive

way to represent a cluster is as a mere collection of packets. This is,

keeping track of all the packets and their respective feature values.

Such representation is clearly not practical since it does not scale.

Therefore, we study two alternative cluster representations.

[X ] Center-based representation. We can represent clusters by

just a single point (e.g., the center of the cluster). The advantage of

this representation is that the distance computation is simple, and

centers can be easily updated following some pre-defined learning

rate [55]. However, we lose a lot of information, such as how big

the cluster is or which packets does it contain, which is useful for

cluster assessment and traceability, respectively (cf. §10).
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[✓] Range-based representation. Following the problem formu-

lation in §4.1, ACC-Turbo represents each cluster c with a range of

values for each ordinal feature [minf (c),maxf (c)], and a set of dis-

crete unique values for each nominal feature {minf (c), ...,maxf (c)}.
Ranges (resp. sets) represent the feature values of packets in a clus-

ter (Fig. 5). This representation preserves information about the

cluster sizes, and simplifies interpretability by providing the ex-

act mapping of packets to clusters. Further, ranges and sets are

easy to compute and update, which facilitates its implementation

on programmable data planes. For instance, the ranges of a new

cluster that merges two existing clusters ci and c j for feature f
are: [min(minf (ci ),minf (c j )),max(maxf (ci ),maxf (c j ))]. Sets can
be implemented as admission lists, using bloom-filters (cf. §6).

4.2.3 The distance function. We first introduce two distance

functions for reference, and then derive the distance function that

we use in ACC-Turbo. For the sake of simplicity, we illustrate the

case in which we only consider ordinal features.

[X ] Anime distance [31]. The cost function in Def.4.1 can be

translated to the online-clustering framework as:

δAnime (C) =
∑
ci ∈C

δ (ci ) =
∑
ci ∈C

(
∏
f ∈F

maxf (ci ) −minf (ci )) (1)

This cost function sums the cost of each individual cluster, which

accounts for the number of packets that the cluster represents, and

estimates the similarity across packets in the cluster. We now derive

a distance function that can be used to assess clustering decisions

while trying to minimize this cost. Assuming a range-based cluster

representation, we define the distance between clusters ci and c j ,
δ (ci , c j ), as the amount of increase in cost produced by merging

the two clusters, compared to the total cost of the two clusters if

they are not merged: δ (ci , c j ) = δ (ci ∪ c j ) − (δ (ci ) + δ (c j )).
The biggest drawback of the Anime distance is the size of the

output space. We can measure it as the product of the maximum

ranges for each feature. For instance, with the following features

and sizes {ip.len (16b), ip.id (16b), ip.f_offset (13b), ip.ttl (8b), ip.proto
(8b), ip.src (32b), ip.dst (32b), sport (16b), dport (16b)}, the maximum

cost is 2
157

. Data structures in existing data planes can store blocks

of maximum 64 bits, which is not enough to represent such cost.

[X ] Euclidean distance. Alternatively, we can derive a cost func-

tion from the broadly-used Euclidean distance [55]:

δ Euclid .(C) =
∑
ci ∈C

δ ′(ci ) =
∑
ci ∈C

©«
∑
f ∈F

∑
p∈ci

∥pf − rf (ci )∥
2ª®¬ , (2)

where rf (ci ) is the representative of cluster ci for feature f . In this

case, the output-space size is much smaller. For the same example,

the maximum cost can be represented with less than 20 bits. How-

ever, computing the Euclidean distance involves square and root

operations, which are not straightforward for existing data planes.

[✓] Manhattan distance. In ACC-Turbo, we use an alternative

distance metric that gathers the benefits of both. Starting from the

Anime distance and trying to reduce the size of its output space,

we substitute the product of all the individual feature distances by

a summation. With this modification, the overall cost function to

be minimized can be written as:

δ Manh .(C) =
∑
ci ∈C

δ ′′(ci ) =
∑
ci ∈C

(
∑
f ∈F

maxf (ci ) −minf (ci )) (3)

The resulting distance function to compare a new packet p with one

of the clusters, ci , can bewritten as:δ (p, ci ) = δ (p∪ci )−(δ (p)+δ (ci )).
We know that δ (p) = 1 will have a fixed value, so it will not impact

the comparison. First, δ (p ∪ ci ) =
∑
f ∈F δf (p ∪ ci ), where:

δf (p ∪ ci ) =


maxf (ci ) − pf , if pf < minf (ci ),

pf −minf (ci ), if pf > maxf (ci ),

maxf (ci ) −minf (ci ), otherwise.

(4)

Second, we canwriteδ (ci ) =
∑
f ∈F δf (ci ), whereδf (ci ) = [maxf (ci )−

minf (ci )]. Finally, δ (p, ci ) ≈ δ (p ∪ ci ) − δ (ci ) =
∑
f ∈F[δf (p ∪ ci ) −

δf (ci )] =
∑
f ∈F δf (p, ci ), where:

δf (p, ci ) =


minf (ci ) − pf , if pf < minf (ci ),

pf −maxf (ci ), if pf > maxf (ci ),

0, otherwise.

(5)

What results from simplifying the Anime distance into a one-

dimensional space is the Manhattan distance from the packet to

its closest point of the cluster. For a single dimension (i.e., feature),

the Manhattan distance and the Anime distance are equivalent. For

higher dimensions, the Manhattan distance compresses the output

space. As such, it loses information with respect to the original

Anime distance. On the other hand, it is easier to compute. Further,

it generates outputs in the linear space (as we have sums instead of

products), becoming implementable in existing data planes.

5 CONTROLLING AGGREGATES
We now describe how ACC-Turbo uses programmable scheduling to

mitigate attacks. First, we introduce the programmable-scheduling

design space (§5.1) and then, ACC-Turbo’s scheduler (§5.2).

5.1 Programmable-scheduling design space
Programming a scheduler consists in defining the order in which

it should drain packets from a given buffer. This is done by tag-

ging each packet with a rank that indicates the priority with which

it should be drained.
3
These ranks are then processed by a (pro-

grammable) scheduler that dequeues the packets trying to follow

the order specified [24, 45, 56].

Ranking algorithms for pulse-wave attacks. From our defini-

tion in §4, a ranking algorithm to mitigate pulse-wave attacks

should deprioritize aggregates of high bandwidth and high packet

similarity. A number of ranking algorithms can be proposed with

this criteria. For example, rank(p) = throuдhput(ci ), rank(p) =
num.packets(ci ), and rank(p) = throuдhput(ci )/size(ci ) depriori-
tize packets by throughput, packet rate, and a combination between

throughput and cluster size, respectively. These algorithms can be

easily computed with the available data-plane resources. Indeed,

aggregate rates can be obtained from packet counters, and packet

similarity can be extracted from cluster sizes (cf. §4).

3
Generally, a lower rank indicates a higher priority.
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5.2 Scheduling algorithm
To use the proposed ranking algorithms for pulse-wave DDoS de-

fense today, we need to make them fit into the limited resources

of existing data planes. This is hard for three reasons. First, these

resources need to be shared with ACC-Turbo’s online-clustering
module, which is resource exhaustive (e.g., 12 stages for 4 clusters

and 4 features (§6)). Second, existing programmable switches do not

support schedulers able to process ranks, forcing us to “build” our

own. While it is possible to approximate this scheduling logic us-

ing priority queues [24, 56], doing so requires additional resources

(e.g., one stage per priority queue [24]). Third, the clustering and

scheduling modules must operate sequentially since the ranking

algorithm requires the clustering results.

Design. We build a programmable scheduler on top of priority

queues and offload the rank computation and the queue mapping

to the control plane. Specifically, the control plane periodically (i)

polls information about the extracted clusters from the data plane,

(ii) assesses clusters’ maliciousness and maps them to a priority

queue, and (iii) deploys this mapping into the data plane such that

future packets of each cluster can be scheduled accordingly. This de-

sign dedicates all the data-plane resources to the inference process,

maximizing its accuracy and preserving line-rate processing.

6 IMPLEMENTATION
We implementACC-Turbo in P416 [11] on Intel TofinoWedge 100BF-

32X [1], with 2484 lines of code. Our prototype uses 12 stages

and supports 4 features and 4 clusters. For each incoming packet,

ACC-Turbo computes its distance to each cluster, selects the closest

cluster, and enqueues the packet with the selected cluster’s priority.

Cluster selection. For each cluster c , we store the minimum and

maximum values of its ordinal-feature’s ranges [minf (c),maxf (c)]
using registers. We store its nominal-feature’s sets using an admis-

sion list, implemented as a bloom filter (cf. §4).

For each arriving packet, we compute its distance to each cluster

by computing all the per-cluster per-feature distances, and aggre-

gating them per cluster (cf. Appendix B). For ordinal features, we
compute the per-cluster per-feature distances by, first, accessing

the register containingminf (c), and checking if the packet feature,

pf , is below the stored value. If that is the case, we set the dis-

tance to df (p, c) = minf (c) − pf within the register’s ALU. If not,

we access the register containingmaxf (c) and set the distance to

df (p, c) = pf −maxf (c) if pf > maxf (c). Since the two registers are
accessed sequentially, this takes two stages. However, computation

for different cluster-feature pairs can be parallelized. For nominal
features, we set the distance to 1 if the bloom-filter entry matched

by pf is empty. This takes one stage.

We aggregate the per-cluster per-feature distances into per-

cluster distances by progressively summing two distances at each

stage using non-stateful ALUs. This requires loд2 |F | stages, being
|F | the number of features. Finally, we find the minimum distance

by progressively comparing two distances at each stage also using

non-stateful ALUs. This requires loд2 |C| stages, being |C| the num-

ber of clusters. The distance-computation and distance-aggregation

operations can also be parallelized to reduce the number of stages.
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Figure 6: Mitigation of a pulse-wave DDoS attack.

Cluster update. When theminimum distance is not zero, we know

that the packet has fallen outside of the selected cluster’s coverage.

In that case, we need to update the cluster’s ranges and sets to

accommodate the new packet. We do so by using resubmission.

Queue selection. We use a match-action table, populated by the

controller, to map the packet into a priority queue based on the

packet’s selected cluster. The controller defines the cluster priorities

from cluster statistics polled from the data plane (i.e., register entries

and packet counters) following the scheduling policy in §5.

Resource requirements. Our implementation (in Tofino 1 [1])

supports a limited number of clusters and features due to Tofino’s

limited number of stages. Newer programmable switches (e.g.,

Tofino 2 and 3 [28, 40]) have a higher number of stages, allowing

more-performant implementations withmore clusters and features.

7 HARDWARE-BASED EVALUATION
We evaluate our hardware implementation of ACC-Turbo on Tofino.

First, we evaluate ACC-Turbo’s performance under a pulse-wave

DDoS attack (§7.1). Second, we compare ACC-Turbo’s performance

to the one of Jaqen [35], a state-of-the-art DDoS defense (§7.2).

7.1 ACC-Turbo’s performance
We generate traffic between two servers, connected by a Tofino

switch, using interfaces of 100 Gbps (sender→Tofino) and 10 Gbps

(Tofino→receiver). As in previous work [35, 58], we replay CAIDA

traces as background traffic [12] and add attack traffic on top using

MoonGen [22]. The pulse-wave DDoS attack that we generate is

composed of four UDP-flood pulses, which have a duration of 10

seconds each and are followed by a 10-second interleave. Each pulse

targets a different IP address within a common subnet and a differ-

ent port. At its peak, the traffic reaches 40.789 Gbps. We configure

ACC-Turbo to use 4 clusters and to use the last two bytes of the

IP destination address, the source port, and the destination port as

clustering features. We use a throughput-based ranking algorithm

and update the cluster priorities at the controller’s maximum speed.

Recovery rate of background traffic. Fig. 6a shows the traffic

throughput evolution under no protection. The attack severely

impacts the background traffic, with a throughput reduction of

≈ 61%. Note that we are replaying traffic traces and do not see the

impact of end-host congestion control. With the effect of congestion

control, performance would worsen even further. When we use

ACC-Turbo, as soon as it infers the attack and deprioritizes its traffic,

background traffic fully recovers its original throughput (Fig. 6b).
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Detection Reaction Mitigation

ACC-Turbo Clustering Always-on Programmable

scheduling

Jaqen [35] Signature

(sketches)

Threshold-

based

Rate limit /

Drop

Table 2: ACC-Turbo’s techniques vs. Jaqen’s.

Reaction time. Fig. 6b illustrates the range of possible reaction

times in ACC-Turbo. While ACC-Turbo reacts to the first pulse

almost immediately, it takes up to ≈ 1s to react to the last two

pulses. This reaction time is the time it takes for the control plane

to (i) poll the throughput of each cluster, (ii) update their priorities,

and (iii) deploy them to the data plane. In our testbed, we leverage a

non-optimized Python controller, which takes several milliseconds.

7.2 Comparison to the state-of-the-art
DDoS-mitigation technique

We compare ACC-Turbo to Jaqen [35], the state-of-the-art DDoS

defense. Jaqen uses sketch-based signatures to detect attacks and

rate-limiting/dropping to mitigate them (cf. Table 2). With respect

to Jaqen, we show that ACC-Turbo . . .

(1) . . . is more generic (§7.2.1), since it infers attacks agnostically,

and not relying on pre-configured signatures.

(2) . . . achieves faster reaction time (§7.2.2), since it can mitigate

attacks without reprogramming the switch.

(3) . . . does not suffer from the “threshold-based activation” vul-

nerability (§7.2.3), since it runs continuously on all traffic.

We use the same setup as in the previous section but with the four

bytes of the destination IP address as features. We replay CAIDA

traces as background traffic at twice their speed (reaching ≈ 7Gbps)
during 100 seconds and run attacks on top using MoonGen [22]. We

generate attacks at maximum capacity, reaching up to ≈ 99 Gbps .

7.2.1 Genericity. We evaluate genericity by analyzing Jaqen’s

and ACC-Turbo’s robustness to attack-traffic variations. Specifically,

we consider a UDP-flood attack, which initially consists of a single

UDP flow (all the packets share the 5-tuple). We then modify the

attack traffic by using: (i) UDP carpet bombing [10, 16, 27] (i.e.,

the attack targets a /24 destination prefix instead of a single IP);

and (ii) UDP source spoofing. We configure Jaqen with a sketch

that detects heavy hitters either by monitoring the 5-tuple (Jaqen
†
)

or the source IP (Jaqen
‡
). We measure the percentage of benign

packets dropped and show the results in Table 3.

We observe that Jaqen is only effective when the correct defense

is deployed, but its performance drastically decreases as soon as the

attack pattern varies. Instead, ACC-Turbo performs well generally,

being more robust to attack variations. This is expected: while ACC-
Turbo infers attacks agnostically, without any initial assumption

of the attack characteristics, Jaqen is signature-based and relies on

pre-configured defenses for a fixed subset of attacks.

7.2.2 Reaction time. We evaluate ACC-Turbo’s and Jaqen’s

reaction time, defined as the time since they see the first attack

packet until they start mitigating the attack. For ACC-Turbo, the
reaction time is the time it takes for the control plane to poll the

Benign

packet drops (%)

FIFO Jaqen
†

Jaqen
‡ ACC-

Turbo

No Attack 0.00 2.50 3.68 0.00

Single Flow 89.85 2.67 3.95 14.79

Carpet Bombing 89.88 73.19 3.95 19.98

Source Spoofing 89.87 88.16 88.51 14.80

Table 3: Mitigation efficiency under attack variations.

cluster statistics, update the cluster priorities, and deploy them to

the data plane. For Jaqen, it is the time it needs to: detect the attack,

compute the right mitigation, orchestrate the network to reroute

legitimate traffic, replicate the switch state to the controller, and

reprogram the switch with the right mitigation and replicated state.

We measure ACC-Turbo’s and Jaqen’s reaction times. For Jaqen,

we consider two cases: (i) when it needs to deploy a new mitigation

(worst case); and (ii) when the right mitigation is already in the

switch (best case). Our results show that ACC-Turbo reacts at least

11× (resp. 10×) faster than Jaqen in the first (resp. second) case.

ACC-Turbo’s reaction time. We generate a simple UDP-flood

attack (all packets sharing the 5-tuple) on top of the CAIDA trace

(Fig. 7a), and measure the time it takes for ACC-Turbo to react. As

depicted in Fig. 7b, ACC-Turbo takes ≈ 1s to react. This is the time

required by the (here, unoptimized) control plane to poll the cluster

statistics, and deploy the updated priorities to the data plane.

Jaqen’s reaction time (defense not deployed). Wemeasure how

fast can Jaqen deploy a mitigation which is not already in the switch.

To do so, we measure how long it takes for a hardware switch to

swap between two (trivial) programs, which simply rewrite the

source IP of all packets. We execute the first program for one minute

before instructing the switch to swap to the second program, which

has been pre-compiled and cached. We send traffic continuously

and measure its downtime. We repeat the experiment 10 times.

On average, it takes 11.5 seconds for Jaqen to deploy a new

mitigation. This is 11× slower than ACC-Turbo’s reaction time.

Fig. 7c shows the result for one of the iterations.

Jaqen’s reaction time (defense already deployed). If the miti-

gation module is already loaded, Jaqen’s reaction time is the time

it takes to detect the attack from the control plane and to deploy

a dropping rule to the data plane. We measure this reaction time

when Jaqen is configured with the simplest defense (to ensure it

is as fast as possible): a sketch that monitors the number of attack

packets and a controller that reads it periodically, activating a drop-

ping action when an attack is detected. We read the sketch entries at

maximum speed and optimize the threshold value for performance.

As shown in Fig. 7d, Jaqen’s reaction time is ≈ 10 seconds. This

is still 10× slower than ACC-Turbo. This is the time required by

the controller to read the sketch and deploy the drop action and

the time it takes for the threshold to be reached–not once, but

twice–since Jaqen’s only considers attacks when detected in two

consecutive time windows.

Jaqen’s slow reaction time, of ≈ 10 seconds, even in the ideal

case, makes it vulnerable to pulse-wave DDoS attacks.
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Figure 7: Reaction-time evaluation.

7.2.3 Threshold-configuration sensitivity. Weanalyze how

sensitive Jaqen is to the threshold-based defense activation vulner-

ability introduced in §2.2. To that end, we take Jaqen’s simplest

possible defense: the 5-tuple heavy hitter in §7.2.1 (Jaqen
†
). Such

defense relies on two parameters: the threshold over which traf-

fic is considered to be an attack and the periodicity at which this

threshold is checked. We analyze the mitigation efficiency when

the two parameters are modified, in the case of a simple UDP-flood

attack on top of a CAIDA trace. We measure the percentage of

benign traffic dropped and compare the results to the case in which

no-defense (i.e., FIFO), and ACC-Turbo, are used.
Fig. 8a illustrates Jaqen’s high sensitivity to threshold configura-

tion. Slight variations in the threshold value (e.g., from 1M packets

to 7M packets) can result in a drastic increase of benign-packet

drops (from ≈ 10% to ≈ 75%). This is expected and aligned with

our arguments in §2.2. Indeed, the best threshold value depends on

the dynamics of both attack and benign traffic, which continuously

change over time. As also expected, too-low thresholds can result

even worse than not having any defense. This is because they may

drop benign traffic even in case of no congestion.

Fig. 8b shows how the periodicity at which the threshold is

checked can further impact a certain threshold’s performance. For

example, a threshold of 10
4packets , which outperforms at the con-

troller’s maximum periodicity, performs very poorly if the peri-

odicity decreases. At the same time, a bad-performing threshold

at maximum periodicity (e.g., 10
7packets) can perform well if the

controller’s periodicity decreases.

ACC-Turbo avoids the threshold-based vulnerability by running

continuously on all traffic. Further, ACC-Turbo does not perform

binary assessments on whether a traffic aggregate is malicious or

not based on its absolute traffic rate. Instead, it performs finer-
grained assessments that deprioritize traffic aggregates based on

their relative rates (with respect to other aggregates) and their

cluster statistics. As a result, even thoughACC-Turbo’s performance

is not as good as Jaqen’s when Jaqen is configured optimally, it

manages to outperform when Jaqen is not perfectly tuned.
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Figure 8: Threshold-configuration sensitivity.

8 SIMULATION-BASED EVALUATION
Given the limitations of our Tofino prototype (§6), we extend the

evaluation of ACC-Turbo by using packet-level simulations in Net-

bench [3, 30]. We evaluate the performance of ACC-Turbo when

it schedules a mix of benign traffic and DDoS attacks. We analyze

the impact of its different design decisions (§4) and study the per-

formance of more-complete implementations of ACC-Turbo (e.g.,

by using Tofino2 or Tofino3 [28, 40]). We first characterize the

clustering strategy (§8.1) and then, the scheduling scheme (§8.2).

Methodology. We simulate an ACC-Turbo-enabled switch that

processes one day of traffic in which a series of DDoS attacks (or

a single morphing attack) is received. We do so by feeding the

CICDDoS-2019 trace [44], which contains a sequence of DDoS

attacks, into a simulated switch running ACC-Turbo. By default, we
configure ACC-Turbo to support 10 clusters, and to use each byte of

the ip.src and ip.dst , sport , dport , ip.ttl , and ip.len as features. We

adjust the capacity of the output link to various congestion levels.

Overall performance. Even though ACC-Turbo’s performance

depends on the characteristics of benign and attack traffic, we

now illustrate its practicality by evaluating it on a realistic dataset

covering a wide range of attack vectors. For all attacks, ACC-Turbo’s
online-clustering algorithm manages to distinguish packets from

attack and benign distributions (achieving cluster’s purity of ≈

90%), with as few as 10 clusters. ACC-Turbo’s performance is better

for well-defined traffic aggregates. For reflection attacks with high

packet similarity, ACC-Turbo manages to save up to 29% more of

benign traffic than FIFO queues, just 5.13% away from an ideal

scheduler with full attack knowledge (cf. Fig. 11b, at 50Mbps).

8.1 Characterizing the clustering strategy
We evaluate ACC-Turbo’s inference by measuring the purity and

recall of the extracted clusters. These metrics measure the accuracy

of the clustering algorithm in mapping packets from different dis-

tributions into distinct clusters. We compute purity by (i) labeling

each cluster as either majority-benign or majority-malicious, based

on the number of clustered packets of each type, (ii) counting the

number of packets that match the cluster’s label, and (iii) dividing

it by the total number of packets [37]. We compute recall of be-
nign (resp. malicious) packets as the percentage of benign (resp.

malicious) packets mapped into majority-benign (resp. -malicious)

clusters. We compute the metrics every one minute and average the

result. We only count periods with both attack and benign traffic.
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Figure 9: Performance by attack type and features.
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Figure 10: Performance of clustering strategies.

Feature selection and attack vectors. Fig. 9a shows the cluster-
ing performance across attack vectors. In all cases, the achieved pu-

rity is above 87%. The clustering performance is strongly related to

the variance of the attack features. For example, reflection-based at-

tacks achieve, on average, 5.4% better purity than exploitation-based

attacks. Within reflection-based attacks, MSSQL and SSDP, which

have higher feature-value variance, perform worst (e.g., MSSQL

uses multiple source ports, while NTP or DNS use a single port).

Fig. 9b shows the performance of clustering on individual fea-

tures. For this particular dataset, IP addresses and source port are

good identifiers of malicious traffic. In contrast, fields like IP pro-

tocol are less useful as attacks use both UDP and TCP. While the

absolute values are tied to the trace characteristics, the split illus-

trates the different performance levels that ACC-Turbo can achieve.

While “narrow” attacks achieve good performance if we look at

the right features, their performance drastically drops as soon as

attacks become diverse or features do not provide a clear signature.

Number of clusters. Fig. 10 shows the performance of different

clustering strategies when the number of clusters varies from 2 to

10. First, as expected (cf. §4), a higher number of clusters provides

better purity and recall.
4
While selecting the optimal number of

clusters is typically a challenge, in ACC-Turbo it is imposed by

the hardware constraints (§6). Second, increasing the number of

clusters is more beneficial for fewer clusters (e.g., the purity in

ACC-Turbo improves by 4% when we move from 2 clusters to 4,

while it only improves 1% when we move from 8 to 10). Since ACC-
Turbo is designed to run in an environment where the number of

clusters is limited, it builds upon this insight and dedicates all data

plane resources to maximize the number of clusters (running the

non-inference operations in the control plane).

4
In fact, a naive way to achieve perfect purity is to have as many clusters as packets,

mapping each packet to its own cluster. From a scheduling perspective, however, this

approach would have no value since clusters would not give any information about

the maliciousness of the packets contained.

Clustering search: fast vs. exhaustive. As expected (cf. §4.2.2),

we observe that exhaustive approaches generally outperform their

respective fast versions, even though the difference gets smaller

as the number of clusters increases. This is especially clear in the

Anime and Manhattan approaches, which use range-based repre-

sentations and have more information to assess clustering decisions

(e.g., 93.24% to 98.09% purity increase for Anime with 10 clusters).

Cluster representations and distances. Overall, center-based
distances “suffer” less when downgraded from exhaustive to fast

(e.g., just 0.79% purity decrease with 10 clusters). There are two

reasons for that. First, since they carry little information about

clusters, the potential improvement of checking more combinations

is limited. Second, range-based approaches are more sensitive to

updates since they directly include the new points as they are

analyzed. In center-based approaches, we just move the center in

the direction of the new data point using some learning rate.

Fast vs. offline and baselines. We compare the performance of

ACC-Turbo to the one of offline k-means with unlimited resources.

In all cases, ACC-Turbo is very close to the offline case (e.g., 4.19%
of difference in purity for 10 clusters, cf. Fig. 10). We also study the

performance of a hybrid approach, which periodically computes the

cluster centers offline and updates them online with the new pack-

ets. While the hybrid approach outperforms, the improvement is

not significant enough to justify its required increase in complexity.

8.2 Characterizing the scheduling scheme
Finally, we study ACC-Turbo’s scheduling performance. First, we

evaluate the schedulers in §5, analyzing how often they prioritize

benign traffic over malicious traffic. We measure a score, defined
as the percentage of one-second intervals in the simulation where

the average priority given to benign traffic is higher than the one

given to malicious traffic. Second, wemeasure the number of benign

packets dropped when the trace is scheduled by a FIFO queue, ACC-
Turbo, and an ideal scheduler, which prioritizes benign traffic. We

use 10 clusters and the 10 most representative features for the trace.

Ranking algorithms. Fig. 11a shows the performance of the sched-

uling algorithms under the two most complex reflection attacks

(cf. Fig.9a). While the absolute values are specific to the dataset, we

see how adding the similarity factor to the rank definition (i.e., the

cluster sizes) improves performance. This result strongly supports

ACC-Turbo’s design decision of using a range-based representation.

Bottleneck. Fig. 11b analyzes the number of dropped packets for

various bottleneck capacities. First, we see that the ACC-Turbo
version that is implementable today (i.e., Manhattan distance, fast

approach) performs almost on par with the ideal case for smaller

bottlenecks. Indeed, at 50 Mbps it saves 29% more benign traffic

than FIFO queues, being just 5.13% worse than an ideal PIFO with

the ground truth. Second, we compare its performance to the one

of Manhattan-exhaustive, and Anime-fast approaches. We see how

the loss in performance of today’s ACC-Turbo comes from the two

design decisions required to make it fit into existing devices: using a

fast approach and reducing the size of the distance space (§4). With

newer programmable switches, some of which are available [28, 40],

more-complete versions of ACC-Turbo become implementable.
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Figure 11: Impact of scheduling for mitigation.

9 LIMITATIONS
In this section, we discuss techniques by which attackers could try

to evade ACC-Turbo (§9.1), and mechanisms by which attackers

could try to weaponize ACC-Turbo to block benign traffic (§9.2).

9.1 Evading ACC-Turbo
ACC-Turbo infers attack traffic in an unsupervised fashion, looking

for unexpectedly-high rates of traffic aggregates (i.e., packets that
share some similarity). Based on this premise, an attacker willing to

evade ACC-Turbo has potentially two options: (i) trying to generate
low-rate attack traffic and/or (ii) trying to diversify attack packets.

Pulse-wave DDoS attacks are volumetric by nature (i.e., they

need high traffic rates in order to congest the target link). As such,

the first option per se is not actually viable. This only leaves the

attacker one option: breaking the packet similarity. In the following,

we discuss two granularities at which the attacker can try to break

packet similarity: at the packet level and at the aggregate level.

Breaking packet similarity at packet level. The goal of this

approach is to make it harder for ACC-Turbo to correlate attack

packets, by adding randomness to one or multiple packet features.

Various techniques serve this purpose: e.g., carpet bombing or IP

spoofing [10, 16, 27]. These techniques spread the feature values

of attack packets all over the space, making ACC-Turbo unable to

identify any relation among them. While ACC-Turbo is robust to a

certain degree of randomness (cf. §7), it can not infer attack traffic

if all the clustering features are randomized. In the worst scenario,

this approach can end up with attack packets mapped to all the

clusters and with ACC-Turbo not being able to mitigate the attack.

Given that these techniques are well known and widely used,

we propose two solutions to prevent them. First, network operators

can pick clustering features strategically to avoid these behaviors.

For example, carpet bombing can be prevented by clustering longer

IP prefixes rather than individual destination IPs [27]. Second, oper-

ators can leverage network-monitoring tools to proactively detect

and mitigate these patterns, e.g., directly in the data plane or as a

part of the cluster’s assessment of ACC-Turbo in the control plane.

Breaking packet similarity at aggregate level. This approach
consists in generating multiple low-rate attack aggregates formed

by different traffic types, such that ACC-Turbo can not identify any

relation between them. In the worst case, this attack can result

in ACC-Turbo deprioritizing traffic clusters that do not accurately

represent attack traffic and not being able to mitigate the attack.

The simplest instantiation of this attack (in number of attack vec-

tors required) is the one composed of |C| spread-out attack vectors,

where each vector targets a different cluster. The goal is to attack all

the clusters simultaneously, such that ACC-Turbo becomes ineffec-

tive. While possible in theory, this attack is challenging to execute

in practice. Indeed, it requires the attacker to: (i) infer the clustering

features and the ranking policy of the victim ACC-Turbo instance,

(ii) find out which are the attack vectors that maximize their respec-

tive distance in the feature space and minimize their probability

to be deprioritized by the ranking policy, and (iii) generate these

attack vectors, while making sure that they can still reach the victim

target. Even though it may be possible to execute this attack for

some scenarios, it requires higher complexity than the needed for

a conventional DDoS attack. Further, this attack becomes harder to

execute, and decreases its effectiveness, linearly to the number of

clusters. This is encouraging given the higher number of resources

available in newer generations of programmable switches (§7).

9.2 Weaponizing ACC-Turbo
We now discuss two attacks which are enabled by ACC-Turbo. Here,
the goal of the attacker is not to evade ACC-Turbo, but to trick it

into treating some portion of benign traffic as malicious traffic.

Swapping attack. This attack aims at causing most benign (resp.

malicious) traffic to be treated asmalicious (resp. benign). For that to

happen, benign traffic needs to already have a high packet similarity

and a high rate. In that case, an attacker can generate lower-rate

traffic with randomized packet headers to congest the target link

while evading ACC-Turbo’s inference. In the worst case, this attack

can result in malicious traffic being prioritized over benign traffic.

This attack can be perceived as a special case of packet-level evasion

(§9.1) and can be defended using the same techniques.

Imitation attack. This attack consists in generating traffic that

resembles production traffic, with the goal of triggering ACC-Turbo
to deprioritize both the attack and the victim traffic. Same as for

previous attack, this attack is challenging to execute in practice.

Indeed, attackers need to predict how the victim’s traffic will look

like at the time of the attack and to be able to accurately replicate

it at a high rate (at least for the features supported by ACC-Turbo).
The problem of imitation attacks (or attacks composed of in-

distinguishable flows) has been studied by previous literature in

the context of link-flooding attacks [29, 54]. Solutions involve rate-

change tests or historical-pattern analysis to shed light on whether

a certain aggregate is a legitimate service or a spoofed replica [29].

10 DISCUSSION
Are today’s DDoS still “aggregates”? Yes. Even though DDoS

attacks can theoretically be arbitrarily complex, most DDoS attacks

today are still formed by well-defined traffic subsets [27, 32], thus

being characterizable as “aggregates” [36]. For instance, the Mirai

attack, which is probably the most famous botnet-based attack to

date, included several flooding attacks such as UDP flood, SYN flood,

ACK flood, or HTTP flood [8]. Each such attack generated highly-

similar packets [53]: for instance, all SYN-flood packets had the

same size, protocol, flags, and shared the same source IP subnets.
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Amplification attacks, such as the NTP-based attack on Cloud-

flare (2014), DNS-based attack on Google (2017), or the Memcached-

based attack against GitHub (2018), can be generally characterized

by unusually-large packets sourcing from a specific port, using the

same protocol, and originating from a common subset of IPs [6, 18].

Finally, alleged link-flooding attacks [41, 48] (cf. [29]) were also

composed by (i) “DNS responses of 3000 bytes and TCP reflections

targeting specific addresses of the victim IXP” [41], and (ii) “ampli-

fication vectors such as NTP, UDP, TCP, and ICMP-floods” [48].

Can ACC-Turbo cover other attack types? While ACC-Turbo
has been designed to cover pulse-wave DDoS attacks, it can also

mitigate conventional DDoS attacks as long as they are volumetric

and composed of clear traffic aggregates (as we show in §8).

On the other hand, ACC-Turbo does not cover application-layer
attacks nor low-bandwidth attacks. Since these attacks are not

volumetric, they do not generate congestion in the network and

remain unnoticed by ACC-Turbo. However, as we discuss in §9,

ACC-Turbo can be deployed together with complementary defenses,

which may protect against attacks that ACC-Turbo can not cover.

What is the impact of leaving ACC-Turbo always-on? Under

sporadic congestion, the possible packet reorderings produced by

ACC-Turbo could be happening without our solution as well, e.g.,

if the deprioritized packets suffered from longer delays on the

network. In case of sustained congestion (not an attack), ACC-
Turbo will deprioritize groups of packets with higher rates (heavy

hitters) and give more priority to less aggressive groups of packets.

The impact could be similar to a fair-queuing scheme, with the

difference that the definition of a flow is inferred dynamically.

What about reordering? Assuming that the features used are

common across all packets of a given flow, all these packets will be

mapped into the same cluster. As such, reordering can only happen

when the priority given to the flow’s cluster increases over time

while there are still packets of the same flow in the queue with the

old (lower) priority. Since we update priorities in time windows of

milliseconds to seconds, potential reordering would only impact

large flows with already-high flow completion times.

What about interpretability? ACC-Turbo’s range-based cluster-

ing allows operators to know which packets are being mapped into

each cluster, as well as the exact mapping of these clusters to the

priority queues. Contrary to a black-box approach, an operator

can access the complete information of every action performed in

real-time. An operator could further modify the table entries in

ACC-Turbo to reduce the number of priority queues to be used to

drop specific parts of traffic or treat some known-benign traffic

preferentially (e.g., by mapping it to a dedicated priority queue).

What future research do we envision? Given the limitations of

ACC-Turbo, we expect future work to tackle two main research di-

rections. First, the design of enhanced inference techniques, which

can identify attack patterns with higher accuracy and robustness.

Second, the combination of signature-based defenses, which out-

perform in detecting known attacks (§8), with generic defenses like

ACC-Turbo, which offer the potential to infer new attacks. The com-

bination of both approaches can also result beneficial in preventing

adversarial attacks to unsupervised DDoS defenses (cf. §9).

11 RELATEDWORK
Given the novelty of pulse-wave DDoS attacks, only a few works

have studied their mitigation [15]. Thus, in this section, we cover

in-network defenses for conventional DDoS attacks, which are

most related to our work. Another group of attacks, called shrew or

pulsing attacks, also leverage traffic pulses to disrupt the victim’s

connectivity [14]. However, they differ from pulse-wave DDoS

attacks because they are low-rate and target TCP vulnerabilities.

Conventional-DDoS defenses. Poseidon [58], Jaqen [35], and

Ripple [54] use programmable switches to mitigate DDoS attacks.

Poseidon proposes a system-level solution to orchestrate traffic to

pre-defined defenses in dedicated servers. Jaqen and Ripple are both

signature-based and rely on a network-wide view of attack signals

to deploy pre-configured defenses. ACC-Turbo runs autonomously

in a switch (not requiring network orchestration nor switch re-

programming), achieves fast reaction times, and covers unknown

attacks. Bohatei [23] uses network function virtualization to adapt

the placement, scale, and the type of pre-defined defenses depend-

ing on the detected attacks. SPIFFY [29] detects link-flooding attacks

by actively modifying the available bandwidth and analyzing the

traffic reaction. Kitsune [39] trains an ensemble of autoencoders

to identify anomalies in network traffic. Euclid [20] uses statistical

analysis to detect attacks from the network. While these solutions

achieve high accuracy, they execute drastic mitigation policies such

as filtering. ACC-Turbo uses programmable scheduling to mitigate

attacks directly from the network with reduced collateral damage.

Scheduling-based DDoS defenses. DDoS-Shield [43] uses sched-
uling to mitigate DDoS attacks. While ACC-Turbo faces pulse-wave
DDoS attacks from the network, DDoS-Shield targets application-

layer attacks from the end-host. In [33], a DDoS defense is pro-

posed, using two priority queues and assigning suspected flows to

the low-priority queue. Suspected flows are identified based on the

difference in harmonic means of the arrival rate of incoming pack-

ets. ACC-Turbo uses more priority queues to enable finer-grained

decisions and accommodates more complex DDoS attacks.

12 CONCLUSIONS
In this paper, we emphasized the need for in-network pulse-wave

DDoS defenses, and showcased the potential of building them by

combining unsupervised inference and programmable scheduling.

We presented ACC-Turbo, the first aggregate-based congestion

control mechanism that mitigates pulse-wave DDoS attacks by

running at line rate on commodity hardware. ACC-Turbo leverages

two key insights: online clustering—to effectively identify (possibly

unknown) attack pulses, and programmable scheduling—to safely

deprioritize traffic according to its maliciousness. We implemented

ACC-Turbo in P4 and deployed it on programmable hardware. ACC-
Turbo can mitigate pulse-wave DDoS attacks in almost real-time.
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A ACC PARAMETERS

Name Definition Value

K Sustained-congestion period 2s
phiдh Sustained-congestion droprate 0.1

ptarдet Target droprate 0.05

k Exponential-moving-average inter-

val for rate estimation

0.1s

Sessions Maximum number of allowed rate-

limiting sessions

5

Release Time Minimum time required for an ag-

gregate to be released after rate-

limiting starts

10s

Free Time Minimum time required for an ag-

gregate to be released after it is de-

tected to “behave”

20s

Cyc . Time Time to revisit the aggregate 5s
Init . Time Time to revisit the aggregate in the

initial phase

0.5s

Table 4: List of the ACC parameters used in the simulations,
excluding RED and rate-limiting configurations.
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B ACC-TURBO CLUSTERING ALGORITHM

Algorithm 1 ACC-Turbo Clustering Algorithm

Require: p: New packet,min,max : Initial ranges
1: procedure Clustering
2: for all p: incoming packet do
3: for all ci ∈ C do
4: d(p, ci ) ← ComputeDistance(p, ci )

5: cselected ← c0 ▷ Initialize selected cluster

6: dmin ← d(p, c0) ▷ Initialize min. distance

7: for all ci ∈ C, i , 0 do
8: if d(p, ci ) < dmin then
9: dmin ← d(p, ci )
10: cselected ← ci ▷ Select cluster

11: if d(p, cselected ) > 0 then
12: min,max ← UpdateCluster(p, cselected )

13:

14: function ComputeDistance(p, ci )
15: d(p, ci ) ← 0 ▷ Initialize distance

16: for f ∈ F do ▷ Iterate over all features

17: df (p, ci ) ← 0

18: if f is ordinal then
19: if pf < minf (ci ) then
20: df (p, ci ) ←minf (ci ) − pf

21: if pf > maxf (ci ) then
22: df (p, ci ) ← pf −maxf (ci )

23: d(p, ci ) += df (p, ci ) ▷ Aggregate distances

24: else
25: if pf < f (ci ) then
26: df (p, ci ) ← 1

27: return d(p, ci )

28:

29: function UpdateCluster(p, cselected )
30: for f ∈ F do ▷ Iterate over all features

31: if f is ordinal then ▷ Update ranges

32: if pf < minf (cselected ) then
33: minf (cselected ) ← pf

34: if pf > maxf (cselected ) then
35: maxf (cselected ) ← pf

36: else ▷ Update feature-value set

37: if pf < f (cselected ) then
38: f (cselected ) = f (cselected ) ∪ pf

39: returnmin,max
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