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Abstract—Recent years saw an increase in computation power
on Internet of things devices such as the Raspberry Pi. It is
now common for such platforms to boast multiple CPU-cores
with clock rates of 1 gigahertz and higher. We have taken this
evolution as a motivator to see how far we can push the limit
in performing complex operations on a large amount of data by
implementing a passive radar system on the Raspberry Pi. To
keep the costs of our system further down, we evaluated the use
of low-cost RTL-SDR receivers.

Our work shows that today’s IoT devices allow real-time
processing for passive radar applications for both, FM and DAB
signals. With our low-cost receiver, we were able to receive echos
of aircraft several kilometers away.

I. INTRODUCTION

Internet of things (IoT) devices, such as low-cost software-
defined radio dongles and Raspberry Pis [1] have recently
made air traffic monitoring accessible to the public. As
these devices are very affordable, many researchers, avia-
tion enthusiasts, and even corporations have started recording
ADS-B and secondary radar (Mode S) signals using them to
track aircraft. Web-based platforms such as FlightAware [2],
Flightradar24 [3] or the OpenSky Network [4] have emerged
which rely on thousands of such IoT devices to operate popular
global live flight tracking services on the Internet.

The success of these IoT devices for receiving aircraft
signals has motivated us to investigate their applicability for
building passive radar systems. In contrast to ADS-B or
secondary radar, a passive radar system tracks aircraft by lever-
aging signal reflections from illuminators of opportunity such
as FM, DAB, or DVB-T transmissions. Despite the popularity
of ADS-B and secondary radar for air traffic surveillance,
passive radar is an interesting alternative as it allows to track
aircraft or drones which are not equipped with or have their
transponder switched off.

Passive radar is, however, inherently more computationally
expensive and requires much higher signal quality than ADS-B
or Mode S decoding. These signals are not modulated for
the purpose of aircraft tracking and the signal strength of
the reflections is naturally much weaker compared to the
high-power signals transmitted actively by the aircraft. A key
question we evaluate in this work is therefore whether the
limited capabilities of IoT devices are sufficient to detect
aircraft using passive radar algorithms.

To our advantage, we have experienced a vast increase of
computing power, not only in high-end devices, but also in
IoT computing platforms such as the more recent versions of
the Raspberry Pi. While a decade ago, a Linux cluster of six
computers was capable of producing one range doppler map
every 5 seconds [5], we will show that today, with computing
equipment for less than 100USD, we can implement a passive
radar receiver that can detect aircraft reasonably well. We rely
on a Raspberry Pi 3 Model B equipped with an RTL-SDR
radio stick to receive the radio signals, digitise them, and
perform our signal processing. To perform complex signal
processing operations, we design a software architecture which
relies on the embedded GPU of the Raspberry Pi, leveraging
the parallel architecture available on such processing units.

The contributions of our work is to show how today’s low-
power and affordable IoT devices can be used to conduct
computation-heavy signal processing to an extent where we
can actually see targets from signals purely processed on a
recent Raspberry Pi computer. We have shown that – despite
the low resolution of the RTL-SDR – its performance is still
suitable for passive radar applications.

II. BACKGROUND

The concept of passive radar systems has already been
known for several decades and first implementations date back
to World War II [6]. Main advantages for such a system
include much lower energy consumption due to omission of
own transmission stations and – apart from visual detection
of its antennas – higher chances of the radar system staying
hidden from malicious third parties.

Passive radar utilises signals from a so-called illuminator
of opportunity whose signals can be used by one or more
receivers. Such a receiver is usually equipped with at least two
phase-coherent channels. With one antenna pointed towards
the actual illuminator – called reference channel, while the
surveillance channel antenna(s) is/are pointed towards the sec-
tor of interest. In this work, we focus on passive radar systems
which are equipped with only one surveillance channel. The
distributed design of the transmitter and receiver mean that
passive radar systems in general are bistatic as opposed to
classical monostatic radar systems. The large turning parabolic
antenna in classical radar systems will receive both range and
bearing of the echo. Passive bistatic radar systems on the other
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hand measure the time delay of the echos that do not constitute
the absolute range of the target and the receiver but rather the
full additional time the signal travels from transmitter to the
target and from there to the receiver. Targets in passive bi-
static radar hence can only be located to an ellipse in single-
receiver, single-transmitter passive radar setups (see Figure 1).
Additionally, such systems measure the Doppler shift from the
relative speed of the target to the transmitter and the receiver.
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Fig. 1. Comparison of the monostatic (a) and bistatic (b) radar topologies.
Usually, monostatic radars can extract both range and bearing from the echos
while passive bistatic radars with a single surveillance channel can only extract
the bistatic range and Doppler shift.

Previous work needed a cluster of six computers to calculate
a range-Doppler map (RDM) in around 5 seconds [5]. The
advent of ARM based low-cost computing platforms has
pushed their computational power past what was considered
cutting edge one decade ago. Recent years, therefore, saw
efforts to bring passive radar processing to embedded devices,
e.g. the Nvidia Jetson platform offering 192 CUDA cores and
a quad-core ARM CPU[7]. Our work intends to push the
boundary on what is actually possible for a processing setup of
less than 100USD. This opens new passive radar applications
for crowdsourcing or various research use cases.

III. SYSTEM ARCHITECTURE

This section describes the system architecture of our passive
radar system and details on the signal processing optimisations
we took to speed-up the calculations.

Signal
Acquisition

Filtering
(FM)

Reconstruction
(DAB)

Correlation

RTL-SDR

Raspberry Pi

Fig. 2. High level flow of signal data within our processing pipeline.

Figure 2 gives a high-level overview of our architecture. Sig-
nal acquisition is performed through the RTL-SDR software-
defined radio platform. It hands over the raw IQ samples

FM DAB
Frequency 88 - 108 MHz 174 - 230 MHz

Modulation analogue
(FM)

digital
(OFDM/DQPSK)

Bandwidth 0.05 MHz 1.536 MHz
Availability Global Local

Network multi-frequency single-frequency
Content dependency yes no

TABLE I
COMPARISON OF FM AND DAB SIGNAL’S PROPERTIES.

to either the filtering or the reconstruction stage, depending
on whether we use frequency modulation (FM) broadcast or
digital audio broadcast (DAB) signals as the basis of our
computations. This distinction arises from the fact that DAB
is transmitted as a digital signal as opposed to the analogue
FM transmissions. For FM-based operation, we need to record
the reference channel in order to filter the surveillance signal
and to provide the reference signal for the correlation stage.
For DAB, on the other hand, we only need the surveillance
signal, from which we can reconstruct the reference signal.

The processed samples are finally handed to the correlation
stage, where an RDM is computed, which then shows the
received echos. We omit the detection stage in this work
as actual localisation and tracking of targets using passive
radar systems requires multiple sensors deployed at different
locations. The localisation therefore needs to be conducted
at a centralised hub, which, in our architecture, would then
perform the actual target detection, localisation and tracking.

A. Illuminators of Opportunity

We have implemented our system for both analogue FM as
well as the digital DAB radio transmissions. Both offer unique
advantages – but on the other hand have distinct disadvantages.
Table I gives an overview of the two illuminator signals.

The performance of an FM-based passive radar system
is highly dependent on the transmitted content. Voice trans-
missions are the least useful transmissions due to the lower
entropy in the signal and additional pauses in between words
and sentences. Music transmissions from Pop and Rock with
their high dynamic compression lead to higher entropy in
the spectrum and do not tend to have high correlation with
other parts of the transmission. DAB transmissions, on the
other hand, are less dependent on the content of an individual
transmission, because, there are multiple program streams
interleaved in both frequency and time. Also, the bit stream
is interleaved and scrambled to add additional entropy to the
stream, making demodulation and decoding more robust.

B. Radio Frontend

Our proposed low-cost system makes use of an RTL-SDR
platform. Specifically, we use the RTL-SDR V3 dongle [8]
equipped with a TCXO which provides a frequency stability
of better than 0.2PPM [9]. This software-defined radio uses a
Realtek RTL2832U chip, featuring a 7-bit ADC and a Rafael
Micro R820T2 chip as radio tuner. The acquisition of FM
signals for passive radar purposes requires two phase-coherent
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Fig. 3. Our phase coherent setup, consisting of two RTL-SDR dongles with
the clock signal being distributed from one PCB to the other through the
added cables.

radio frontends. The RTL-SDR V3 offers solder pads on its
PCB to extract the clock signal from one receiver and feed it
into additional devices (see Figure 3). For the reception of FM
signals, we use two phase-coherent RTL-SDRs with sampling
rates of 240 kS/s each and for DAB we use a single RTL-SDR
with a sample rate 2.048MS/s.

C. Computation Platform

Our passive radar system is implemented for the Raspberry
Pi platform. In particular, we use the version 3 model B,
which is equipped with a 1.2GHz quad-core ARM Cortex-
A53 processor with a dual core VideoCore IV GPU [1]. In
general, we aimed to write the software pipeline in a hardware
agnostic way and use compiler flags to either use the generic
FFTW library [10] or GPU FFT [11] for instances running
on the Raspberry Pi. A disadvantage that comes with using
the Raspberry Pi’s GPU is that we are not able to calculate
arbitrary FFT lengths but only those of powers of two. This
limitation will dictate our design decisions for the final length
of the correlations in both the time and the frequency domain.

Our pipeline uses a modular approach, where each process-
ing step is its own program and – at the moment – each of
them read the source signal from a file and write their output
to a new file.

D. Signal Processing

We implemented the processing steps as described below
and as shown in Figure 2.

1) Direct Signal Interference (DSI) Suppression: In an FM
setup, the surveillance reception chain is still highly influenced
by the very strong direct signals. In order to make echos more
visible in the surveillance signal, we first need to remove the
direct signal interferences.

To this end, we make use of a fast-block least mean
square (FBLMS) filter. It offers a good compromise between
computation time and DSI removal performance [12]. The
FBLMS filter is an adaptive filter working on signal blocks
of both the reference and the surveillance signal. The filter
produces weights to estimate the amount of reference signal
in the surveillance channel which are then removed from
the surveillance signal and output as the assumed “clean”
surveillance signal. The filtered signal and the reference signal

+

+

·

Weights

Reference Signal − Filtered Surveillance Signal

Updated Weights

Surveillance Signal

µ

Fig. 4. Block diagram of the FBLMS filter.

are then used to update the weights of the filter for the next
block. Figure 4 gives a schematic overview of the filter design.

2) Reference Signal Reconstruction: As the DAB system
omits the reference signal chain, we need to reconstruct
the original transmitted signal from the surveillance chain.
We therefore demodulate the OFDM signal and map the
point-clouds of the π/4 differential QPSK constellation to
an optimal, “noise-less” signal and treat this as the assumed
direct signal (see Figure 5). This approach is analogous to
various previous work [13], [14]. For further processing steps
we remove the null symbol since it does not add much energy
and is thus not suitable for the correlation process.

Fig. 5. The demodulated OFDM symbols (dots) are mapped to one of the four
expected carrier values (x) on the unit circle according to their positioning in
the four quadrants of the complex plane.

3) Range-Doppler Map Generation: In the final stage of
our pipeline, we take the surveillance and the reference signals
and correlate them over a certain integration time, in order
to lift the weak echos above the noise floor. In a classical
approach [5], one would create frequency shifted copies of
the reference signal and correlate each of the copies to the
surveillance signal and stack the result into a two dimensional
matrix.

To reduce computational load, we instead use the batches
algorithm [15] as the basis of our pipeline. This algorithm
approximates the phase progression by assuming a constant
phase during each processed batch. In order to create the
RDM, we cut both input signals into equal-sized, time-aligned
batches. The corresponding batches from each channel are
cross-correlated using the fast Fourier transform (FFT) and
the results stacked into a two dimensional array. Finally, we
compute the FFT of the two dimensional array column-wise
which yields the RDM. Figure 6 gives a visual overview
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Fig. 6. Generic schematic of the Range-Doppler map generation using the
batches algorithm. The ⊗ symbol denotes the cyclic cross correlation.

over the RDM generation procedure as implemented in our
processing pipeline.

This step is quite heavy on the processing resources as it
requires a total of three Fourier transforms per batch. One
Fourier transform plus an additional inverse transform are
needed for the correlation of the two corresponding batches
and one Fourier transform operation is performed on each
column of the intermediate two-dimensional array. For DAB,
we use an FFT size of 2048 samples for the range domain and
512 samples in the Doppler domain which gives us a coherent
processing interval (CPI) of 0.6 s and an integration time of
0.5 s as we need to remove the cyclic prefix before each DAB
frame. These values translate to a range resolution of ∼150m
and a Doppler resolution of 1.56Hz. For FM processing, we
use an FFT size of 512 samples for both range and Doppler
domains, which yields an integration time of 1.1 s.

As our reference signal reconstruction (DAB) and DSI
suppression (FM) stage already transforms our recorded time
signal to the frequency domain and also generates the ref-
erence signal in the frequency domain, we can already omit
the initial FFT operation for the cyclic cross correlation. To
further improve the performance of our program, we do not
immediately perform an inverse Fourier transform in the cross
correlation but rather fill the two dimensional matrix first and
then perform a two dimensional FFT over the whole matrix.

Because the unstable oscillator in our SDR causes frequency
drifts at the radio frontend, we perform a recentering of each
RDM through automatic detection of the zero-Doppler line as
a final step before the output.

IV. EVALUATION

In this section, we evaluate our prototype system based on
the processing overhead and passive radar performance. We
mainly show the results for our DAB based system and include
some data on the processing performance of the FM system.

A. Processing Performance

Even though the Raspberry Pi 3 platform offers a quad-core
ARM processor, its computational power alone is too low to
offer real-time processing of the whole passive radar pipeline.
We therefore evaluate how much speed-up can be achieved
when using the GPU for FFT processing.

Figure 7 shows the processing times for reference signal
and range-Doppler map generation. We performed the com-
putations in the following configurations:
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Fig. 7. Performance measurements for reference signal reconstruction of
one DAB frame (left) and correlating the reference and surveillance data and
building a range doppler map (right). Each bar shows the mean processing
time and the standard deviation. The dashed lines mark the real-time limit for
both computations.

Notebook: For performance reference, we used a current
notebook equipped with an Intel Core i7-6500 processor
with 4 logical 2.5 GHz cores running Ubuntu 18.04 LTS
64bit.

Raspberry Pi CPU: We compiled our software without
changes to the source code on the Raspberry Pi 3
Model B to get the baseline performance of the platform’s
CPU only. It ran Raspbian 9 Stretch, a fork of Debian
optimised for the Raspberry Pi, for both configurations.

Raspberry Pi GPU: We adapted the source code of our
software to perform the FFT operations on the Raspberry
Pi’s GPU.

Figure 7 depicts the performance of these configurations
for both the signal reconstruction and the range-Doppler map
generation. We calculated the average and standard deviation
for the processing time of the reference signal generation over
approximately 5.500 DAB frames. The reference time for pro-
cessing a single DAB frame (96ms) is denoted by the dashed
line. All our configurations perform on average faster than
real-time for the reference signal reconstruction. As expected,
the notebook performs best and reconstructs a reference frame
in 25.2±8.4ms. The Raspberry Pi’s performance for both
configurations are very close. With the GPU performing
only slightly faster than the CPU, with 73.4±13.4ms and
79.9±19.5ms. These numbers reveal that using the GPU only
improved the average processing time by less 10.0%. While
this fact might be surprising at first, these performances are
owed to the current software architecture where each DAB
frame is reconstructed sequentially. However, copying the data
to the relevant buffer, initiating the GPU call and reading the
result for a single FFT adds a lot of overhead. In a future
iteration of our implementation, we intend to parallelise the
OFDM demodulation so we can perform multiple FFTs in
one batch, again leveraging the faster FFT performance of the
GPU.

For the generation of the range-Doppler map, we computed
the mean and standard deviation over a total of 127 range-
Doppler maps. Again the notebook outperforms the Raspberry
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Fig. 8. FM performance measurements for direct signal interference filtering
(blue) and correlating the reference and surveillance data and building a
range doppler map (orange). Each bar shows the mean processing time and
the standard deviation. The dashed line mark the real-time limit for the
computations.

Pi. It was able to compute a RDM in 60.3±8.6ms. The
integration time of 645.7ms is marked by the dashed line
in the figure. All configurations performing below said line
provide real-time generation for range-Doppler maps. For this
step, we clearly see the advantage of using the Raspberry
Pi’s GPU to offload the FFT computations. On the CPU
the Raspberry Pi generated one RDM every 1127.9±13.0ms
while the GPU pushed this number down to 276.1±10.4ms,
offering a performance boost of a factor of approximately 4.
Because we actually perform a 2D-FFT over the resulting
matrix, we can first perform 512 FFTs with a size of 2048
and then 2048 FFTs with a size of 512 samples. Handing
this amount of data directly to the GPU where the FFTs are
performed in parallel, the performance is a lot faster than the
CPU computing all these FFTs in sequence. Making use of the
GPU allows us to reach real-time performance on a Raspberry
Pi.

For our FM processing pipeline, we processed approxi-
mately 200 range-Doppler maps with a size of 512 times
512 samples. The results are shown in Figure 8. We mea-
sured an average of 509.8±6.4ms for the filtering stage and
157.7±8.5ms for generating the range-Doppler map on the
Raspberry Pi’s GPU. Due to the decreased FFT sizes, the FM
pipeline runs faster than its DAB counterpart. The CPI for the
range-Doppler map was 1 s. Running the same pipeline on the
Raspberry Pi’s CPU yields lower processing times due to the
sequential FFT processing in the DSI filtering stage, where
the call to the GPU for an individual FFT operation is slower
than directly calculating it on the CPU.

To evaluate how the size of the range-Doppler map influ-
ences the processing time, we varied the FFT size (i.e. the
integration time while keeping the batch length constant) in
the Doppler domain in our DAB pipeline (see Figure 9). As the
integration time increases with the higher FFT size, we present
the required processing time relative to the CPI duration. It
is apparent that even with a size of 256 FFTs in the Doppler
domain, the Raspberry Pi’s CPU is too slow to process the data
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Fig. 9. Performance evaluation for range-Doppler map processing with
varying FFT sizes in the Doppler domain relative to the CPI (dashed line).
The results for an FFT size of 512 samples corresponds to the correlation part
of Figure 7.

in real time. The Raspberry Pi’s GPU manages to process the
range-Doppler map within less than 50% of the CPI duration.
While the processing time for the Raspberry Pi’s GPU remains
constant relative to the CPI, the longer FFT sizes start to
narrow down the performance gap between the notebook’s
CPU and the Raspberry Pi’s GPU. Such long integration times
of two seconds and more might however not be useful in an
avionics context due to the high velocities at which aircraft
travel.

Our results have shown both the FM and DAB systems
being able to perform passive radar computations in real time.
The over-all performance of the Raspberry Pi platform even
suggests that additional processing steps – such as additional
filtering or CFAR processing – could actually be implemented
while still performing faster than real-time.

B. Passive Radar Performance

To evaluate the performance of our system as a passive radar
receiver, we went to Zurich airport and set up our equipment
at the car park at the end of the runway. The signals were
recorded using a Yagi antenna pointed parallel the direction
of the runway facing away from the airport.

The results of our DAB measurements are shown in Fig-
ures 10 and 11. Figure 10 shows a max-hold over a series
of 753 range-Doppler maps. Several distinct tracks of aircraft
during their approach to the airport can be seen in the lower
left. The aircraft started to appear at a bistatic range of
approximately 30 km. There is also a weaker track visible
extending from the zero Doppler line at approximately 45 km
towards 55 km bistatic range and 150Hz Doppler. As our
experimental site was located in a vale, longer range detection
of echos was not feasible. The figure also shows strong inter-
ferences close to zero range and zero Doppler which seems
to be related to the receiver’s frequency instabilities [16].
These interferences appeared periodically after a number of
generated RDMs. Figure 11 shows a filtered version of the
same data, revealing an additional track starting from the left
around 50Hz Doppler shift.
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Fig. 10. Max-hold of a series of 753 range-Doppler maps over a duration of
486 seconds based on our DAB setup.
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Fig. 11. A visualisation of the same data from Figure 10 with frames removed
where the noise exceeds 10% of the average background noise.

Even though we had detections in RDMs based on FM
signals, due to the analogue modulation the results were too
noisy to visualise in a meaningful way without additional
CFAR processing.

V. CONCLUSION

In this work, we have shown that the advent of IoT
devices is allowing computations on low-cost, small footprint
platforms where a decade ago a whole cluster of computers
was necessary. We presume that the performance figures of
our system could still be drastically improved using more
optimised code, data-structure optimisations, and processor
specific instruction sets. As future work, we will investigate
how the current Raspberry Pi’s ARM Neon architecture could
be used for optimisation of sequential FFT and non-FFT
processing stages.

Our findings proved that low-cost radio platforms such as
the RTL-SDR – despite being limited and noisy compared
to professional SDR platforms – are still more than capable

to acquire and digitise signals in a quality suited for passive
radar operations. Our system which costs less than 100USD
is capable of detecting aircraft with considerable SNR up to
30 km bistatic range.
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